Sprawko moje, podstawy robotyki


Politechnika Krakowska

Wydział Mechaniczny

Instytut Technologii Maszyn i Automatyzacji Produkcji

Zakład Zautomatyzowanych Systemów Produkcyjnych

Podstawy Robotyki

LABORATORIUM

Temat ćwiczenia:

Wykorzystanie manipulatora linkowego do wyznaczenia przemieszczenia zwrotnicy koła względem nadwozia.

WYKONALI:

Chojnacki Mateusz

Duszyc Michał

Zespół 1

Gr. 12A1

Rok akademicki: 2009/2010

  1. Przedstawienie obiektu badań:

  1. Schemat zawieszenia 5-wahaczowego:

0x01 graphic

  1. Analiza strukturalna:

Powyższy schemat przedstawia cztery wahacze (w1,..,w4) oraz łącznik τ połączony z przekładnią kierowniczą. Mechanizm posiada dwie pary przesuwne, dwanaście przegubów kulistych i dziesięć członów.

Różnica pomiędzy zawieszeniem typowo 5-wahaczowym koła przedniego, a zawieszeniem występującym przy kole tylnym, polega na zastąpieniu jednego wahacza z przodu łącznikiem prowadzącym przez zębatkę kierowniczą.

Obliczenie ruchliwości (m):

M=6(n-1)-5p5-4p4-3p3-2p2-p1

n=10 - liczba ogniw, p5=2 pary klasy V, p3=12 pary klasy III

M=6*9-5*2-12*3=8

Ruchliwość => M=8

W powyższym wzorze nie uwzględnione zostały ruchy lokalne, które maja wpływ na ruch całego mechanizmu. W tym przykładzie jest 6 takich ruchów. Po ich uwzględnieniu ruchliwość:

M=8-6=2

Rzeczywista ruchliwość mechanizmu wynosi 2. Położenie wahacza możemy określić za pomocą dwóch zmiennych zębatki kierowniczej oraz ugięcia sprężyny resorującej.

  1. pozycja i orientacja zwrotnicy względem nadwozia:

0x08 graphic

DANE:

bib , i= 1,…,5 ; ai , i=1,…,5 ; g3, p3 ; di = |wc|, i=1,…,5 ; ci = |A1C1|

W wyniku analizy położeń wyznacza się wektor pozycji Ob i macierz orientacji Rb zwrotnicy koła, opowiadające zadanej wartości zmiennych s i pz.

0x08 graphic
0x01 graphic

  1. Określenie położenia zwrotnicy koła względem nadwozia:

  1. zadanie proste kinematyki:

0x01 graphic

Każdemu wahaczowi można przypisać wektor di : di=Rb0x01 graphic
+Ob-ai

Uwzględniając stałe wymiary wahaczy można zapisać: diT i = di 2 i= 1,2,3,4,5

0x01 graphic
Więc zadanie wyznaczenia położeń sformułowane jest sześcioma nieliniowymi równaniami algebraicznymi o 6 niewiadomych (są to współrzędne zwrotnicy kola).

  1. zadanie odwrotne kinematyki:

0x01 graphic

Współrzędne konfiguracyjne s i pz określonego położenia można wyznaczać z zależności na dł. wahaczy:

di=|bi-ai|, bi= Rb0x01 graphic
+Ob

0x01 graphic

Metoda rozwiązania zadania odwrotnego kinematyki jest łatwiejsza od metody rozwiązania zadania prostego, ponieważ nie wymaga dodatkowych przekształceń.

  1. Wykorzystanie manipulatora linkowego do wyznaczenia przemieszczenie zwrotnicy koła względem nadwozia:

  1. schemat pomiarowy manipulatora linkowego0x08 graphic
    0x08 graphic
    :

0x08 graphic
0x01 graphic

  1. układy w schemacie pomiarowym:

0x01 graphic

  1. zadanie proste kinematyki:

0x01 graphic

  1. zadanie odwrotne kinematyki:

0x01 graphic

  1. schemat stanowiska pomiarowego:

0x01 graphic

stałe: 0x01 graphic
,0x01 graphic
,0x01 graphic
,0x01 graphic

zmienne: 0x01 graphic
,0x01 graphic

szukane: 0x01 graphic
,0x01 graphic

  1. Wyniki wykonanych pomiarów:

  1. Pomiary dla Smax

Nr. Bad. \ Nr. linki

I1

I2

I3

I4

I5

I6

1

1, 482

1,476

3,256

3,604

1,474

3,543

2

1,479

1,48

3,264

3,599

1,476

3,56

3

1,479

1,479

3,264

3,6

1,475

3,56

X [mm]

Y[mm]

Z[mm]

α

β

γ

1

276,0268

388,8219

13,3031

-2,0232

-1,5717

18,4469

2

275,4606

389,3834

11,095

-2,1052

1,3282

18,6162

3

275,8845

389,3171

11,2607

-2,0697

-1,2813

18,6643

  1. Pomiary dla Smin

Nr. Bad. \ Nr. linki

I1

I2

I3

I4

I5

I6

1

1,454

1,496

3,532

3,452

1,622

4,267

2

1,454

1,495

3,536

3,446

1,624

4,281

3

1,454

1,494

3,536

3,448

1,623

4,28

X [mm]

Y [mm]

Z [mm]

α

β

γ

1

271,8922

384,0379

-107,727

-2,8259

-0,1169

19,1636

2

271,8204

383,2538

-110,311

-2,768

-0,0543

19,1291

3

271,3798

383,2942

109,952

-2,7604

-0,0084

19,1819

  1. Pomiary dla S0

Nr. Bad. \ Nr. linki

I1

I2

I3

I4

I5

I6

1

1,46

1,488

3,403

3,543

1,548

3,906

2

1,457

1,495

3,41

3,538

1,561

3,926

3

1,458

1,487

3,41

3,54

1,557

3,924

X [mm]

Y[mm]

Z [mm]

α

β

γ

1

275,7399

392,8119

-44,7705

-2,6126

-0,703

19,0491

2

272,8576

392,8464

-49,6569

-2,9112

-1,2293

18,8146

3

275,2527

392,4503

-49,2768

-2,6957

-1,0904

18,749

α- kąt skrętu koła, β - pochylenie koła, γ - kąt obrotu zwrotnicy względem obrotu osi koła i zwrotnicy

Powtarzalność dla Smax

X [mm]

Y [mm]

Z [mm]

α

β

γ

0,075469

0,226326

9,337049

0,003244

4,56E-05

0,000561

Powtarzalność dla Smin

X [mm]

Y [mm]

Z [mm]

α

β

γ

2,067611

41,9308

1625,983

20,42846

0,328545

97,67269

Powtarzalność dla S0

X [mm]

Y [mm]

Z [mm]

α

β

γ

5,940111

6,785633

71,52388

0,075744

0,04945

0,27607

  1. Wnioski:

  1. Zadania:

Zadanie 1.

Na podstawie danej pozycji i orientacji określonej względem układu xyz oraz współrzędnych punktów Bi i=1…6 określonych względem układu lokalnego xbybzb ciała wyznaczyć współrzędne tych punktów B­i względem układu globalnego xyz

Narysować schemat;

0x08 graphic
0x01 graphic

o =

[

-39,2

-39,2

151,6

]T

Tabela 1. Współrzędne punktów Bi (bib, i =1, 2...n, n ≥ 6)

[mm]

b1b

b2 b

b3 b

b4 b

b5 b

b6 b

x

173.2

175.2

-78.2

-96.9

-96.9

-78.2

y

-12.0

12.0

156.0

146.0

-144.0

-156.0

z

-6.8

12.5

0

13.2

2

7.2

bi=Rb*0x01 graphic
+ob.

0x01 graphic

Zadanie 2.

Na podstawie danych współrzędnych punktów Ai, gdzie i = 1, 2, …6 określonych względem układu {xyz} wyznacz układ lokalny ciała (przyjąć oznaczenie układu {xayaza}) oraz wyznacz współrzędne tych punktów względem układu lokalnego.

0x01 graphic

Tabela 2. Współrzędne punktów Ai (ai, i =1, 2...n, n ≥ 6)

[mm]

a1

a2

a3

a4

a5

a6

x

175.2

173.2

-76.2

-94.9

-96.9

-76.2

y

-12.0

14.0

156.0

144.0

-142.0

-156.0

z

2.0

4.3

4.0

4.2

1.8

-3.8

0x01 graphic
a=0x01 graphic
= [ 0,83 0,56 -6,6 x 10-3] T

0x01 graphic
a=0x01 graphic
= [ 2,88 x 10-3 7,58 x 10-3 1 ] T

0x01 graphic
a=0x01 graphic
a x 0x01 graphic
a = [ -0,56 -0,83 -4,7 x 10-3 ] T

0x01 graphic

0x01 graphic

0x01 graphic

Zadanie 3.

Wyznaczyć wektor pozycji i macierz orientacji układu {xayaza} względem układu {xyz}

Jeżeli dane są wersory określone w układzie {xyz}, jako:

0x01 graphic
= [1 0 0]T, 0x01 graphic
= [0 1 0]T, 0x01 graphic
= [0 0 1] T, 0x01 graphic
= [m1 n1 k1] T, 0x01 graphic
= [m2 n2 k2] T, 0x01 graphic
= [m3 n3 k3] T

oraz współrzędne początku układu współrzędnych {xayaza} jako: A0 = (2, 4, -1)

Obliczenia wykonać na symbolach.

Ra 0x01 graphic
Ra =0x01 graphic

Zadanie 4.

Określić wielkości stałe i zmienne w zadaniu

0x01 graphic

Rys. 2. Wektory pozycji i macierze orientacji układów odniesienia koła-platforma B- platforma A-nadwozia

Wielkości stałe:

0a, Ra, okb, 0x01 graphic

Wielkości zmienne:

0x01 graphic
, Rb, oab, Rk

0x01 graphic

l3

l3

Platforma A

Platforma B

A2

A1

A3

A4

A5

A6

B2=B3

B1= B6

B4= B5

l2

l1

l3

l4

l5

xb

yb

zb

xa

ya

za

Ob

x

y

z

xc

zc

yc

Oc

Trajektoria

Człon roboczy C

oc

oa

l6

Oa

O

0x01 graphic



Wyszukiwarka

Podobne podstrony:
sprawko 2 moje, Automatyka i robotyka air pwr, VI SEMESTR, Metody numeryczne, lab 2 seidel
Automatyka SPRAWKO nandy, Automatyka i robotyka air pwr, IV SEMESTR, Podstawy automatyki 2, laborki
ćw 26 - sprawko moje, Szkoła, Semestr 4, Podstawy elektroniki, Bart, Podstawy Elektroniki LAB, Podst
SPRAWKO ĆW1, Automatyka i robotyka air pwr, IV SEMESTR, Podstawy automatyki 2, laborki, CW.1
ćw 26 - sprawko moje kopia, Szkoła, Semestr 4, Podstawy elektroniki, Bart, Podstawy Elektroniki LAB,
nasze sprawko, podstawy robotyki
podstawy robotyki odpowiedzi
CHRAPEK,podstawy robotyki, Urz dzenia chwytaj ce i g owice technologiczne robotów przemys owych cz 2
Podstawy Robotyki lab5
OBLICZENIA MATLAB, PWR, SEE - sprawka moje
Politechnika Śląska sprawko moje (Naprawiony)
Sprawko moje
sprawko2 moje
Podstawy Robotyki lab3 id 36832 Nieznany
sprawko moje
Sprawko moje obrabiarki (2)
sprawko moje
prim sciaga, PG ETI AiR i eletele, Sem4, Podstawy Robotyki

więcej podobnych podstron