dx
Idt
(x-l)2Jx2 + l [ J y/2t2+2t + 2
/!»— Jf—1
1 i/ćć^+1 1,
:--+—ln
2 jc-1 4
--V2/3+2r + 2+-f
9 9 J
\+X-tJx2 +1
1-Jt
df
2 J ifat2 +2t+ 2
+ C2,
bo
a stąd
df
f aft •"'=łi4V2<2+2/ + 2+x[-7=
Jyl2t2+2t + 2 Jj2t7+2t + 2
rmA« + * +K-
•J2t2 +2t+2 2<l2tl+2t + 2 lit
==-'|V5P
,t2+2t+2'
+ 'Zt + 2,
czyli -/ = A(2/ + l) + A" i wobec tego A = , K =—.
2 2
Ostatecznie więc
(*-l)Vx2+l 2 *~1 4
4.9. Ponieważ
więc
xdx
+ 1 3ln |
1+JC-1 |
-1 4 |
1- |
1 |
2 |
*-l ' |
jc-2* |
dx |
■ -- + 2 f |
1 )./9 |
+ C.
dc
Ale
ede
( i f
-f-i=J—**
J Vt2 -2/-1
(4.7)
= - ln
-x+-j2-x2
x-l
+ C,
t=^Y = «p.1(4 jr = y+l = ę>(r), <p'W = -^-. 2-jc2=2-^i + lj =l(r2-2/-l)
oraz
r * |
( \ \ |
J (c—2)l/2 - JC2 |
■i V-2/2-4/-l < A |
(47> 1 . 2*-3 ^
= - — arcsin-^-— + C2
2 ^(i-2)
'=^ = *-.(4 * = 7+2, ę»'(0— p-, 2-x2=2-fi + 2] =l(-2t2 =4/-l).
i
'*-2
60