Zadania + Rozwiązania
Oblicz pochodną funkcji:
» /(x) = 5x
> f(x) = 3x7
> f(x) = a:5 + x2 + 4
» /(x) = 3sfx
» f(x) = £
» f(x) = x4 » /(x) = 5x - 3
> /(x) = 6x4 - 3x2 + 5x
> f(x) = sfa?
> f(x) = £ + v/i
Oblicz pochodną funkcji:
> /(x) = §x4 - %x6 + l|x + §x5 + 10
> f(x) = ax7 - | + c
» f(x) = 8x4 - 2x-3 + 5x13 » f(x) =
» f(x) = 5 z[x - 3x2 + | \/x®
^y = ih-y*
3> y = 3x° -fx
» y = (3x2 — 2\Jx)(2x4 — Sś/ic4)
»»= 3^2
V = \Ox'-:ix-+7
> f (x) = 10x23 + 5x12 + ^x2 » /(*) =
» /(x) = 3x3 _ 10x3^ + 4x3 + 10*
> f(x) = 3v^
» f (x) = y/x - f \/x2 - 5\/x3
^ y= + 3xh ~ *75
*y =
» t/ = (—3x2 + ^ + 10)(^x — 5x) ^ V = 373+77+7 y ~ -3i5-6i1+8i
» y = -4xg2Ą31x+2
V = (I-I3)(2+5x-^)
> y =
» /(x) = (6x2 — 3x + 2)5 » /(x) = (5x3 - Jj- + 10)”
5+x2 » /(x) = 2sinx
» f(x) = sin f
> f(x) = 10 sin § f(x) = sin2 3x
» f(x) = . 2
> /(*) = "sc^sT » /(x) = Tifrf
/(x) = sin x — 5 cos4 x
> y = tg5 yx
» /(x) = 10ex » /(a:) = ex sinx — 2ex » /(x) = e5x(3sinx - cosx)
> f(x) = sin2 \fl
»/(x) = Ś£f-3^7
2> /(i) = \Jcosx - \Jx + 3^/0?
»/(*) = 2ft*$5=
jg> /(x) = (3 sin4 x — 2 sin x) cos x » /(x) = e4x
> /(x) = xex » /(x) = ecosx »/(x) =e“in2x
3> /(*) = (a:3 — 5x2 + 7x — l)ex » /(x) = <*33-^e-» /(x) = 8X + 3X » f(x) = 5 • 8X + 5 » /(x) = 3X ■ 72x » /(x) = 12 ln x » f (x) = ln 5x » /(x) = 4 ln 9x >/(x) = 81n^
»/(x) = 5 ln x_jxi_l
»B = ln(|±|i|f|
» /(x) = ln (sin §x)2 » f(x) = 8 ln tg h + S,n2x-3X
» /(x) = ln(ln(lnx))
» /(x) = lncosx
»y = ln(l + §)
y = logt ln x » f (x) = x3x
> /(x) = xsinx
»/(*) = (!)“
» /(x) = 6lnx
» /(x) = x^
» f(x) = (ctg x)cos x » /(x) = (sinx)tgx
» f(x) = xeX »/(*) = (1 + i)1
3> /(x) = arcsin4x 2> /(i) = arc tg (2x3 - x)
/(x) = arc sin Vx®
3> /(x) = arc sin \/x2 — 1 + arc cos y/x'2 — 1
» |
2 = ' |
s/ax2 + bx + c |
> |
m |
1 V5x-4xJ |
> |
/(*) |
1 ■</{<•*+Ł)Ł |
> |
/(*) |
/x3-2x2+3 Y^f+573+7 |
> |
m |
_ 4/3-v/t V 3+v7 |
> |
f(x) |
= X COS X |
> |
/(*) |
= sin x cos x — ctg x |
> |
/(*) |
= 5 cos 3x |
> |
/(*) |
= 5x2 + cos 5x |
> |
f(x) |
c 4 1 = —5cos qX |
> |
fix) |
10 cos4 5x |
> |
f(x) |
= ęosx , _3^ 2x 3- cosx |
> |
/(*) |
cosx+sin x |
» |
y = : |
i- sin2 x — | sin3 x + | sin5 x |
> |
y = * |
i ctg2 x + ctg4 x |
> |
/(x) |
= x2ex |
> |
/(*) |
e*+s3 4eJ |
> |
/(*) |
= x3e4x cos x |
> |
/(*) |
= 5 cos4 3x2 |
> |
/(*) |
7 COS3 X sin5 x |
> |
/(*) |
= yj2 + tg (x — J) |
> |
/(*) |
= tg x + ctg x + 3x |
> |
/(*) |
= (sinx + cosx)(tgx + ctg |
> |
/(*) |
= 2e3x |
> |
/(*) |
= 5x2e_3x |
> |
/(*) |
= 6esinx |
> |
/(x) |
_ Ąe2 cos4 x |
> |
/(*) |
= (7x3 — 2x + l)ex2_1 |
> |
/(*) |
= (x + 2v'6-x2)e3x“1 |
> |
/(*) |
= 5xx4 |
» |
/(*) |
= 5 ■ 104x |
» |
/(*) |
= 25x36xx9 |
> |
/(*) |
= 7 + log2 x |
» |
f(x) |
= l°g3 8^77 |
> |
f(x) |
= log5 {x-y/3- X2) |
» |
f(x) |
= l°g4 v/fS |
> |
f(x) |
= log2(log3x) |
> |
f(x) |
= log7tg(|7T+ix) |
> |
f(x) |
l°g3 \j l+cosx |
> |
f(x) |
= sin(log5(x2 — 2x)) |
> |
f(x) |
losł^rf |
> |
f(x) |
~ *°gv/3 |
> |
y = l |
og (e3x + e-2x) |
> |
y = 1 |
ogx 54 |
: 8x_7x : 4xCOSX
i
X*
. ^ln 2x
> / (x) = arc tg \/x2 + 1 - x 3> /(x) = arc sin v^l — x2 — 1^
3> /(x) = arc sin » /(x) = arc tg
> /(*) = arc cqst
» /(x) = x2 arc tg x4 » f (x) = 3 arc tg(2 tg x + 1)
» /(a;) > /(*) » /(a:) » /(*)
> /(a:) » /(a:) » /(x)
> /(*) » /(a;) » /(a:)
> f(x)
> /(*) » /(*) > /(*) » /(a:)
» /(a:) » /(a:) » fix) » /(*) » /(a;)
: (cOSx)SinX
: (t.gx)^
: ec'
■■ Xx*
9 arc cos ^x
= arc ctg V*2 —1
: arccos2x\/l — x2 : (2x + 1) arc ctg x : |x5 arc cos x — |(x4 + x3)
= arc cos
arc ctg fj-J:
- »rcclg3r
1—5x
_ 1 3 arc cc
- 75 3+2 ar,