LastScan2

LastScan2



I. LICZBY, ICH ZBIORY ■

2 1

m


4 w


8. wykaż, że dla każdej liczby rzeczywistej dodatniej prawdziwa jest nierówność m + —- > 1 -

m

9. Największym wspólnym dzielnikiem liczb x, y jest 12, a najmniejszą wspólną wielokrotnością tych liczb jest 420. Wiadomo, że liczba xjest podzielna przez 5, a liczba y jest podzielna przez 7.

a)    Wyznacz najmniejsze liczby x i y o tych własnościach.

b)    Podaj własność, jaką muszą spełniać dowolne liczby rzeczywiste o tych własnościach.

12x *+ 41    x ~ 3


10. a) Wykaż, że dla x g (-2,3) liczba a =1 - 3^--jest równa 4.

2x + 4    |x-3|


11


www.operon.pl


Wyszukiwarka

Podobne podstrony:
31 (272) 1.8. Indukcja matamafycznammmmmmam Metodą indukcji matematycznej wykaż, że dla każdej liczb
Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej n ^ 1 prawdziwe j
Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej n > 1 prawdziw
Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej n > li a >
Zadanie 27. (0-2) Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y praw
Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej n > 1 prawdziw
Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej n ^ 1 prawdziwe j
50.2. LICZBY RZECZYWISTE. Przykład 0.1.2 Pokażemy, że dla każdej liczby naturalnej n € N zachodzi 6
32 (262) Wykaż, żc dla każdej liczby naturalnej n liczba 2 + 9 jest podziclna przez 1
Zadanie 33. Udowodnij, że dla każdej liczby naturalnej k istnieje język L C {a, b. c}* dający się ro
PRZYKŁAD Jako kolejny przykład dowiedziemy, że dla każdej liczby naturalnej prawdziwa jest równość 1
158 GRZEGORZ LISSOWSKI dwie liczby a i b>0 takie, że dla każdej osoby h e S oraz dla każdego podz
PRZYKŁAD Jako kolejny przykład dowiedziemy, że dla każdej liczby naturalnej prawdziwa jest równość 1

więcej podobnych podstron