DSC07016 (6)

DSC07016 (6)



48

Ciągi liczby

b) Zbtór punktów .kupienia ciąg* (V"> m* P08^ 3 = {    ».»}■*•*«"

e) Zbić. punktów kupieni. d«u (-.) »no postać S = {-a.-j.O. 5. U jj. tata*

_    3

iim . s —2    oraz    Hm s»» 3 «•

iaa*»    n—oc    2

wo

d) Zbiór punktów dni pienia    P«taó 5' = {-co. O. co}, zatem

llm-tn. = ~oo    oraz    Bm ti/n = <»-

.    fl 'BO

Zadania

Zadanie 1.1

Na podstawie wartości kilku początkowych wyrazów podanych ciągów znaleźć ich

wzory ogólne;

«)    =    2,0.24,120, ...);

c)(*n) =(1,3,7,16.31,63,...);

e)(«n)-(M.7,10....);

g)(<«) = {0.1.0. -1,0,1.0.-I,...);

i) (e„) = (0.7,0.77,0.777,0.7777....);

b)    *,3. ±.6.±....);

d) (*») =(1,1,1,2,2,2,3,3,3,

0 (*n) = (s, -4^2,4, -2V5. ■■■); h) (<*») = (0,1,6,23,119,...);

i") (/") = (0,1,1,0.0,0,1,1,1,1...0-

• Zadanie 1.2

Ola podanych chjgd.w napisać wzory określające wskazań - - 1 1 «


ie wyrazy tych ciągów: • + ÓT* V»+*


C) Zn * (2fi 4 1)1, Sn-r-l

c) a„ = v^nJ -ł F. On ♦ii


b>‘'~ = S7+2^TT + Sr+2+-+^

i; d) t« w(na + l)s, tan-,;


(2n)!'


6a«+a;


g) O, - (ni)"*’, rf,-; h) rf- = 3" + 3"+‘ + -• + 3aJ

’ Pf^podanc Cg* «» ograniczonezdoln. z gńry, ograni

/ O.    b) =* l**1/

(-2)’

1

2" —3";

•) «•


•Iz, mną-n*-,    , oXn

Zadania


49


s)Cn = PTT + P+2 •*3+3

ni 12


h)d„=2noin^:    i*) e" " „!'


4* + n


IV 22" + 13" + I'


• Zadanie 1.4

Zbadać, czy podane ÓW * nionotonicznc od pewnego miejsca


-; b)lk


"l*"“n*-en$W , ioO* c^ = ts:STm:

e) aa = nr - *1 On - 60; .9

«) c" = o»»' i) Cn = 2" + 3»*

f) bn = 3° + (-2)n;

h,rf" = 4.7—..(r+3n)‘ J)/. = v/5+2-n.

• Zadanie 1.5

Korzystając z definicji granicy właściwej ciągu uzasadnić podane równości:

2"-3"


a) lim


2n+ 1


0;


e) lim 5—2 « -i; n-^oo n -f 4


b) lim

B-Ofl

d) lim


2n + 3" 1

n—oo 2" + 5


«-l;


e*) li


lim.e/MfitUa; f.) ,,m i^ = „: r—oo \ n -i-1 J    «-*«> n!

•    Zadanie 1.6

Korzystając z definicji granicy niewłaściwy ciągu uzasadnić podane równości: a) Jiin^ log2(n i 3) = oo; b) lim (n4 -1) = oo; c) lim (v/n - n) » -oo; d) lim (10-y/n) =

•    Zadanie 1.7

Korzystając z twierdzeń o arytmetyce granic ciągów obliczyć podane granice: •)nUm (^+ia_n); b)BUm

C) n-S>~n-3niH-ł; 01™ (v/"J+ <"+”> “    + 2n);

g)n<lm ^L:

Wyszukiwarka

Podobne podstrony:
DSC07026 (4) 40 Ciągi liczbowe Zauważmy, że — ś 1 dla n £ I. Oznacza lo. że ciąg (*„) jest nierosnąc
DSC07027 (4) 42 Ciągi liczbo* Przykład 1.10 Korzystając z definicji liczby t oraz z twierdzenia o gr
skanuj0036 (124) zbiór nieskończonej liczby subtelnych punktów widzenia, z których każdy zawiera cał
Radosław Grzymkowski MATEMATYKA Zadania I Odpowiedzi Strona8 Funkcje & Ciągi 78 6. Funkcje i
Dla wszystkich całek można zauważyć, że wraz ze wzrostem n (liczby losowanych punktów),
Ocena nakładu pracy studenta oraz określenie liczby i struktury punktów ECTS (według wzoru: przewodn
9 0.2. LICZBY RZECZYWISTE. Dla n +1 rozważmy ciąg dodatnich liczb rzeczywistych x,..., xn+ takich że
POLITECHNIKAGDAŃSKA 5. PODSUMOWANIE LICZBY GODZIN I PUNKTÓW ECTS: ŁĄCZNA LICZBA GODZIN W
Ocena nakładu pracy studenta oraz określenie liczby i struktury punktów ECTS Bilans nakładu pracy
Ocena nakładu pracy studenta oraz określenie liczby i struktury punktów ECTS Bilans nakładu pracy
info Ekonomika rolnictwa Zasady: Zaliczenie ćwiczeń na podstawie liczby zdobytych punktów: Kolokwium
DSC07010 nakż spojrzeć zawsze z dwóch punktów widzenia: z punktu widzenia zadań i»L- , .   
DSC07023 (4) 34 Ciągi liczbowe Zatem *a no można przyjąć dowolną liczbę naturalną większą lub równą

więcej podobnych podstron