Ostatni sprawdzian z Ekonometrii!! © Czas: 180 min. 24-05-2004
Imię
Nazwisko
Odpowiedzi na pytania teoretyczne proszę udzielać względnie krótko, wypisując wzory i niezbędny komentarz. Liczy się to,
żeby nie zapomnieć o żadnej ważnej sprawie, natomiast niekoniecznie trzeba się długo rozpisywać. Powodzenia!_
1. (35 pkt.) Dany jest model o postaci:
N'
Reszty z oszacowania zwykłą MNK tego modelu podane są w tabeli. Proszę:
A) (10 pkt) zweryfikować (na poziomie istotności 0,05) hipotezę mówiącą o występowaniu w modelu autokorelacji składników losowych typu AR(1).
B) (10 pkt.) zweryfikować (na poziomie istotności 0,05) hipotezę mówiącą, że wariancja składników losowych dla 4 pierwszych obserwacji jest mniejsza niż dla 4 ostatnich (dane pomocnicze w tabeli). Podać postać macierzy oraz £2A'‘ w tym przypadku.
C) (5 pkt.) podać i krótko uzasadnić decyzję, czy w danym przypadku należy zastosować zwykłą MNK czy EUMNK.
D) (5 pkt.) opisać, jak uzyskać oceny parametrów EUMNK oraz ocenę asymptotycznej macierzy kowariancji tego estymatora w rozważanym przypadku.
E) (5 pkt.) proszę podać wzór jakim wyraża się prawdziwa macierz kowariancji estymatora zwykłej MNK w tym przypadku.
Reszty MNK: \ t
dla wszystkich obserwacji
Osobno dlat = 1,2,3,4
Osobno dla t = 5,6,7,8
1
6
8
-0.494
-0.165
-0.296
-0.099
0.194
0.065
-0.191
0.199
Wartości krytyczne testu D-W dla T=8 oraz k=2 (poz. ist. 0.05)
0.33
-0.824
0.138
-0.493
dT =0.736
Wartości krytyczne (poz. ist. 0.05) w rozkładzie F(v1, y2)
II £ |
2 |
3 |
4 | |
II |
161.4462 |
199.4995 |
215.7067 |
224.5833 |
2 |
18.51276 |
19.00003 |
19.16419 |
19.24673 |
3 |
10.12796 |
9.552082 |
9.276619 |
9.117173 |
4 |
7.70865 |
6.944276 |
6.591392 |
6.388234 |
0.121
0.156
0.323 0.994
d[j=1.132
[gdzie struktura macierzy O. odpowiada autokorelacji składników losowych typu AR(1)] uzyskano podane w tabeli oszacowania MNW parametrów poraz a. Proszę:
L) (5 pkt) podać rozkład obserwacji oraz postać funkcji wiarygodności w tym modelu. Proszę bardzo krótko opisać, jak uzyskano oceny MNW parametrów poraź a.
M) (15 pkt.) wyliczyć przybliżony błąd średni szacunku (z estymacji MNW) dla parametru a.
N) (15 pkt) rozważając parametr y — 2Of_0"4 , proszę podać ocenę MNW parametru yoraz jej przybliżony błąd średni szacunku.
t |
1 |
2 |
3 |
4 |
ot NW |
NW |
_Yi_ |
-0.504 |
-0.272 |
-0.18 |
-0.131 |
0.45 |
0.3 |
r>
(30 pkt.) Proszę opisać estymację MNW modelu SURĘ, a w szczególności proszę:
F) (5 pkL) zapisać założenia i postać modelu.
G) (5 pkt) podać rozkład obserwacji oraz postać funkcji wiarygodności w tym modelu.
H) (5 pkt.) opisać koncentrację funkcji wiarygodności po parametrach strukturalnych /? - podać postać skoncentrowanej funkcji wiarygodności.
I) (5 pkt.) podać i uzasadnić (ale nie udowodnić) dlaczego w tej koncentracji wykorzystujemy (możemy wykorzystać) akurat taką postać funkcji maksimum warunkowego.
J) (5 pkL) podać, jak uzyskujemy tu oceny MNW nieznanych parametrów modelu.
K) (5 pkt.) opisać, jak uzyskujemy oszacowanie asymptotycznej macierzy kowariancji estymatora MNW nieznanych parametrów.