Esej Matrix rot

background image

Olsztyn, 27th May, 2013

University of Warmia and Mazury in Olsztyn
Faculty of Geodesy and Land Management
Department of Satellite Geodesy and Navigation

















ESSAY

Elementary rotation matrices in 3D space.

















Daria Bruniecka

Geodesy and Satellite Navigation

1st year M.Sc. studies






background image

Elementary rotation matrices in 3D space

a. Generated by modulo function
b. Prove that and check relation

( ) =

( ) =

(− ); = , ,

The elementary 3D rotation matrices are constructed to perform rotations individually about
the three coordinate axes.


Rotation about

z-axis

(x, y, z = 1,2,3)

'

'

Z = Z’

- the angle of elementary rotation about z-axis



From Oxyz to Ox’y’z’ we have R

3

(+

)

From Ox’y’z’ to Oxyz we have R

3

(-

)

From above figure we have:

z

z

y

x

'

'

sin

'

'

cos

'

'

sin

cos

z

z

y

x

We calculate:

sin

cos

sin

sin

cos

cos

)

sin

sin

cos

(cos

)

cos(

'

cos

'

y

x

x


Therefore:

0

sin

cos

'

z

y

x

x

sin

cos

cos

sin

)

sin

cos

cos

(sin

)

sin(

'

sin

'

y

0

cos

sin

'

z

y

x

y

And

1

0

0

'

z

y

x

z

From the point of view of matrix calculations we have:

1

0

0

0

cos

sin

0

sin

cos

)

(

3

R

- for polar distances

- for polar angles

background image

Analogical considerations give us:
Rotation about

x-axis

(x, y, z = 1,2,3)

'

'

X = X’

- the angle of elementary rotation about x-axis

From Oxyz to Ox’y’z’ we have R

1

(+

)

From Ox’y’z’ to Oxyz we have R

1

(-

)

From above figure we have:

'

sin

'

'

cos

'

'

z

y

x

x

sin

cos

'

z

y

x

x

We calculate:

sin

sin

cos

cos

sin

sin

cos

cos

)

cos(

'

cos

'

y

Therefore:

sin

cos

0

'

z

y

x

y

And

cos

sin

0

'

sin

cos

cos

sin

)

sin

cos

cos

(sin

)

sin(

'

sin

'

z

y

x

z

z

0

0

1

'

z

y

x

x

The elementary rotation about x:

cos

sin

0

sin

cos

0

0

0

1

)

(

1

R







- for polar distances

- for polar angles

background image

Analogical considerations give us:
Rotation about

y-axis

(x, y, z = 1,2,3)

'

'

Y = Y’

- the angle of elementary rotation about y-axis

From Oxyz to Ox’y’z’ we have R

1

(+

)

From Ox’y’z’ to Oxyz we have R

1

(-

)

From above figure we have:

'

cos

'

'

'

sin

'

z

y

y

x

cos

'

sin

z

y

y

x

We calculate:

sin

0

cos

'

sin

cos

cos

sin

sin

cos

cos

sin

)

sin(

'

sin

'

z

y

x

x

x

cos

0

sin

'

sin

sin

cos

cos

)

sin

sin

cos

(cos

)

cos(

'

cos

'

z

y

x

z

z

And:

0

1

0

'

z

y

x

y

The elementary rotation about y:

cos

0

sin

0

1

0

sin

0

cos

)

(

2

R










- for polar distances

- for polar angles

background image

Elementary rotation matrices in 3D space

a) Generated by modulo function

Common looking on elementary rotations:
Subroutine: (i, α, A

3x3

);

i = 1, 2, 3 = x, y, z



MOD(A,P) computes the remainder of the division of A by P

j = mod(i, 3) + 1
k = mod(j, 3) + 1

( , ) = −

, ∈

For i -th row
A (i,i)=1

A(i,j)=0

A(i,k)=0

For j -th row
A (j,i)=0

A(j,j)=

cos

A(j,k)=

sin

For k-th row
A(k,i)=0

A(k,j)= -A(j,k)

A(k,k)=A(j,j)

1) for x-azis:


i = 1
j = mod (1,3) + 1 = 2
k = mod (2,3) +1 = 3

For 1

st

(i) row:

0

)

3

,

1

(

)

,

(

0

)

2

,

1

(

)

,

(

1

)

1

,

1

(

)

,

(

A

k

i

A

A

j

i

A

A

i

i

A


For 2

nd

(j) row:

sin

)

3

,

2

(

)

,

(

cos

)

2

,

2

(

)

,

(

0

)

1

,

2

(

)

,

(

A

k

j

A

A

j

j

A

A

i

j

A


For 3

rd

(k) row:

cos

)

2

,

2

(

)

3

,

3

(

)

,

(

)

,

(

sin

)

3

,

2

(

)

2

,

3

(

)

,

(

)

,

(

0

)

1

,

3

(

)

,

(

A

A

j

j

A

k

k

A

A

A

k

j

A

j

k

A

A

i

k

A

cos

sin

0

sin

cos

0

0

0

1

)

(

1

R





given (input)

output

background image

2) for y-azis:

i = 2
j = mod (2,3) + 1 = 3
k = mod (3,3) +1 = 1

For 1

st

(k) row:

sin

)

1

,

3

(

)

3

,

1

(

)

,

(

)

,

(

0

)

2

,

1

(

)

,

(

cos

)

3

,

3

(

)

1

,

1

(

)

,

(

)

,

(

A

A

k

j

A

j

k

A

A

i

k

A

A

A

j

j

A

k

k

A


For 2

nd

(i) row:

0

)

3

,

2

(

)

,

(

1

)

2

,

2

(

)

,

(

0

)

1

,

2

(

)

,

(

A

j

i

A

A

i

i

A

A

k

i

A


For 3

rd

(j) row:

cos

)

3

,

3

(

)

,

(

0

)

2

,

3

(

)

,

(

sin

)

1

,

3

(

)

,

(

A

j

j

A

A

i

j

A

A

k

j

A

cos

0

sin

0

1

0

sin

0

cos

)

(

2

R

3) for z-azis:

i = 3
j = mod (3,3) + 1 = 1
k = mod (1,3) +1 = 2

For 1

st

(j) row:

0

)

3

,

1

(

)

,

(

sin

)

2

,

1

(

)

,

(

cos

)

1

,

1

(

)

,

(

A

i

j

A

A

k

j

A

A

j

j

A


For 2

nd

(k) row:

0

)

3

,

2

(

)

,

(

cos

)

1

,

1

(

)

2

,

2

(

)

,

(

)

,

(

sin

)

2

,

1

(

)

1

,

2

(

)

,

(

)

,

(

A

i

k

A

A

A

j

j

A

k

k

A

A

A

k

j

A

j

k

A


For 3

rd

(i) row:

1

)

3

,

3

(

)

,

(

0

)

2

,

3

(

)

,

(

0

)

1

,

3

(

)

,

(

A

i

i

A

A

k

i

A

A

j

i

A

1

0

0

0

cos

sin

0

sin

cos

)

(

3

R

background image

Elementary rotation matrices in 3D space

b) Prove that and check relation

( ) =

( ) =

(− ); = , ,

For i=1, x-axis:

R

1

(+β)=

1

0

0

0
0 −

The inverse matrix:

( ) =

1

det

( )

det R

1

(+β) - determinant of a matrix

M - matrix of cofactors

det R

1

(+β)=

1

0

0

0
0 −

= cos

2

β+ sin

2

β=1

M

11

=

(−1)

= cos

2

β+ sin

2

β=1 M

12

=

(−1)

0
0

=0 M

13

=

(−1)

0
0 −

=0

M

21

=

(−1)

3

0

0

=0 M

22

= (−1)

4

1

0

0

=cos M

23

=

(−1)

5

1

0

0 −

=sinβ

M

31

=

(−1)

0

0

=0 M

32

=

(−1)

5

1

0

0

= −sinβ M

33

=

(−1)

1

0

0

=cosβ

M=

1

0

0

0
0 −

The inverse matrix is as follows:

( ) =

1

det

( )

=

1

0

0

0

0

Transposed matrix is as follows:

( ) =

1

0

0

0

0

It is known that:

sin(− ) = − sin( ) and

cos(− ) = cos ( )

So:

(− ) =

1

0

0

0

0

To sum up the proof:

( ) =

( ) =

(− )

background image

For i=2, y-axis:

R

2

(γ)=

0 −

0

1

0

0

det R

2

(γ)=

0 −

0

1

0

0

= cos

2

γ+ sin

2

γ=1

M

11

=

1

0

0

= cosγ M

12

=

0

0

=0 M

13

=

0

1
0

= −

M

21

=

0 −
0

=0 M

22

=

= 1 M

23

=

0
0

=0

M

31

=

0

1

0

=sinγ M

32

=

0

0

=0 M

33

=

0

0

1

=cosγ

M=

0 −

0

1

0

0

( ) =

1

det

( )

=

0

0

1

0

0

( ) =

0

0

1

0

0

(− ) =

0

0

1

0

0

To sum up the proof:

( ) =

( ) =

(− )

background image

For i=3, z-axis:

R

3

(α)=

0

0

0

0

1

Det R

3

(

)=

0

0

0

0

1

= cos

2

α+ sin

2

α=1

M

11

=

0

0

1

= cosα M

12

=(-1)

3

0

0

1

=

M

13

=

0

0

=0

M

21

=(-1)

3

0

0

1

= −

M

22

=

0

0

1

=cos M

23

=

0

0

=0

M

31

=

0
0

=0 M

32

=

0

0

=0 M

33

=

= 1

M=

0

0

0

0

1

( ) =

1

det

( )

=

0
0

0

0

1

( ) =

0
0

0

0

1

(− ) =

0
0

0

0

1

To sum up the proof:

( ) =

( ) =

(− )


Wyszukiwarka

Podobne podstrony:
Esej Matrix rot
Esej Matrix rot
Esej o chrześcijaństwie
esej rodzina, Pedagogika, socjologia edukacji
esej z psychiatrii, PIELĘGNIARSTWO ROK 3 LICENCJAT
SKŁADANIE EWOLUCYJNEJ MOZAIKI esej
Dola ateisty esej
O zakładzie Pascala słów kilka esej
matrix, 5d , 2002 2010
Euro ratunek czy katastrofa esej id
Esej Współczesne Kierunki Wychowania
„Mądrość, która chadza w parze ze skromnością i poczuciem humoru” Esej Leszka Kołakowskiego O podróż
Esej - zaliczenie wersja robocza, ZARZĄDZANIE, Zarządzanie przedsiębiorstwem
esej manipulacja, Pedagogika, socjologia edukacji
Zasiłki w Polsce i w Wielkiej Brytanii - esej, Politologia - pliki
komunikacyjne esej, Studia, Sem 5, SEM 5 (wersja 1), Budownictwo Komunikacyjne, budownictwo komunika
esej rozwojowa film

więcej podobnych podstron