Esej Matrix rot

Olsztyn, 27th May, 2013

University of Warmia and Mazury in Olsztyn

Faculty of Geodesy and Land Management

Department of Satellite Geodesy and Navigation

ESSAY

Elementary rotation matrices in 3D space.

Daria Bruniecka

Geodesy and Satellite Navigation

1st year M.Sc. studies

Elementary rotation matrices in 3D space

  1. Generated by modulo function

  2. Prove that and check relation


Ri1(α)=RiT(α)=Ri(α);i=1,  2,  3

The elementary 3D rotation matrices are constructed to perform rotations individually about the three coordinate axes.

Rotation about z-axis (x, y, z = 1,2,3)

Z = Z’

- the angle of elementary rotation about z-axis

From Oxyz to Ox’y’z’ we have R3 (+)

From Ox’y’z’ to Oxyz we have R3 (-)

From above figure we have:

We calculate:

Therefore:

And

From the point of view of matrix calculations we have:

Analogical considerations give us:

Rotation about x-axis (x, y, z = 1,2,3)

X = X’

- the angle of elementary rotation about x-axis

From Oxyz to Ox’y’z’ we have R1 (+)

From Ox’y’z’ to Oxyz we have R1 (-)

From above figure we have:

We calculate:

Therefore:

And

The elementary rotation about x:

Analogical considerations give us:

Rotation about y-axis (x, y, z = 1,2,3)

Y = Y’

- the angle of elementary rotation about y-axis

From Oxyz to Ox’y’z’ we have R1 (+)

From Ox’y’z’ to Oxyz we have R1 (-)

From above figure we have:

We calculate:

And:

The elementary rotation about y:

Elementary rotation matrices in 3D space

  1. Generated by modulo function

Common looking on elementary rotations:

Subroutine: (i, α, A3x3); i = 1, 2, 3 = x, y, z

MOD(A,P) computes the remainder of the division of A by P

j = mod(i, 3) + 1

k = mod(j, 3) + 1


$$\text{mod}\left( i,\ j \right) = i - \frac{i}{j}j\ \ \ \ \ \ \ \ i,j \in N$$

For i -th row

A (i,i)=1 A(i,j)=0 A(i,k)=0

For j -th row

A (j,i)=0 A(j,j)= A(j,k)=

For k-th row

A(k,i)=0 A(k,j)= -A(j,k) A(k,k)=A(j,j)

  1. for x-azis:

i = 1

j = mod (1,3) + 1 = 2

k = mod (2,3) +1 = 3

For 1st (i) row:

For 2nd (j) row:

For 3rd (k) row:

  1. for y-azis:

i = 2

j = mod (2,3) + 1 = 3

k = mod (3,3) +1 = 1

For 1st (k) row:

For 2nd (i) row:

For 3rd (j) row:

  1. for z-azis:

i = 3

j = mod (3,3) + 1 = 1

k = mod (1,3) +1 = 2

For 1st (j) row:

For 2nd (k) row:

For 3rd (i) row:

Elementary rotation matrices in 3D space

  1. Prove that and check relation


Ri1(α)=RiT(α)=Ri(α);i=1,  2,  3

For i=1, x-axis:

R1(+β)=$\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & \text{sinβ} \\ 0 & - \text{sinβ} & \text{cosβ} \\ \end{bmatrix}$

The inverse matrix:


$$R_{1}^{- 1}(\beta) = \frac{1}{\det{R_{1}(\beta)}}M^{T}$$

det R1(+β) - determinant of a matrix

M - matrix of cofactors

det R1(+β)= $\left| \begin{matrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & \text{sinβ} \\ 0 & - \text{sinβ} & \text{cosβ} \\ \end{matrix} \right|$= cos2β+ sin2β=1

M11=${( - 1)}^{2}\left| \begin{matrix} \text{co}\text{sβ} & \text{sinβ} \\ - sin\beta & \text{cosβ} \\ \end{matrix} \right|$= cos2β+ sin2β=1 M12=${( - 1)}^{3}\left| \begin{matrix} 0 & \text{sinβ} \\ 0 & \text{cosβ} \\ \end{matrix} \right|$=0 M13=${( - 1)}^{4}\left| \begin{matrix} 0 & \text{cosβ} \\ 0 & - sin\beta \\ \end{matrix} \right|$=0

M21=( − 1)3$\left| \begin{matrix} 0 & 0 \\ - sin\beta & \text{cosβ} \\ \end{matrix} \right|$=0 M22=(−1)4$\left| \begin{matrix} 1 & 0 \\ 0 & \text{cosβ} \\ \end{matrix} \right|$=cosβ M23=( − 1)5$\left| \begin{matrix} 1 & 0 \\ 0 & - sin\beta \\ \end{matrix} \right|$=sinβ

M31=${( - 1)}^{4}\left| \begin{matrix} 0 & 0 \\ \text{cosβ} & \text{sinβ} \\ \end{matrix} \right|$=0 M32=( − 1)5$\left| \begin{matrix} 1 & 0 \\ 0 & \text{sinβ} \\ \end{matrix} \right| = -$sinβ M33=${( - 1)}^{6}\left| \begin{matrix} 1 & 0 \\ 0 & \text{cosβ} \\ \end{matrix} \right|$=cosβ

M=$\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & \text{sinβ} \\ 0 & - \text{sinβ} & \text{cosβ} \\ \end{bmatrix}$


$$R_{1}^{- 1}\left( \beta \right) = \frac{1}{\det{R_{1}\left( \beta \right)}}M^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & - \text{sinβ} \\ 0 & \text{sinβ} & \text{cosβ} \\ \end{bmatrix}$$

Transposed matrix is as follows:


$$R_{1}^{T}(\beta) = \ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & - \text{sinβ} \\ 0 & \text{sinβ} & \text{cosβ} \\ \end{bmatrix}$$

It is known that:

sin(−β) = −sin(β) and cos(−β) = cos(β)

So:


$$R_{1}\left( - \beta \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \text{cosβ} & - \text{sinβ} \\ 0 & \text{sinβ} & \text{cosβ} \\ \end{bmatrix}$$

To sum up the proof:


R11(β)=R1T(β)=R1(β)

For i=2, y-axis:

R2(γ)=$\begin{bmatrix} c\text{osγ} & 0 & - sin\gamma \\ 0 & 1 & 0 \\ \text{sinγ} & 0 & \text{cosγ} \\ \end{bmatrix}$

det R2(γ)=$\left| \begin{matrix} \text{cosγ} & 0 & - sin\gamma \\ 0 & 1 & 0 \\ \text{sinγ} & 0 & \text{cosγ} \\ \end{matrix} \right|$= cos2γ+ sin2γ=1

M11=$\left| \begin{matrix} 1 & 0 \\ 0 & \text{cosγ} \\ \end{matrix} \right|$= cosγ M12=$\left| \begin{matrix} 0 & 0 \\ \text{sinγ} & \text{cosγ} \\ \end{matrix} \right|$=0 M13=$\left| \begin{matrix} 0 & 1 \\ \text{sinγ} & 0 \\ \end{matrix} \right| = - sin\gamma$

M21=$\left| \begin{matrix} 0 & - sin\gamma \\ 0 & \text{cosγ} \\ \end{matrix} \right|$=0 M22=$\left| \begin{matrix} \text{cosγ} & - sin\gamma \\ \text{sinγ} & \text{cosγ} \\ \end{matrix} \right|$= 1 M23=$\left| \begin{matrix} \text{cosγ} & 0 \\ \text{sinγ} & 0 \\ \end{matrix} \right|$=0

M31=$\left| \begin{matrix} 0 & - sin\gamma \\ 1 & 0 \\ \end{matrix} \right| =$sinγ M32=$\left| \begin{matrix} \text{cosγ} & - sin\gamma \\ 0 & 0 \\ \end{matrix} \right|$=0 M33=$\left| \begin{matrix} \text{cosγ} & 0 \\ 0 & 1 \\ \end{matrix} \right|$=cosγ

M=$\begin{bmatrix} \text{cosγ} & 0 & - sin\gamma \\ 0 & 1 & 0 \\ \text{sinγ} & 0 & \text{cosγ} \\ \end{bmatrix}$


$$R_{2}^{- 1}\left( \gamma \right) = \frac{1}{\det{R_{2}\left( \gamma \right)}}M^{T} = \begin{bmatrix} c\text{osγ} & 0 & \text{sinγ} \\ 0 & 1 & 0 \\ - sin\gamma & 0 & \text{cosγ} \\ \end{bmatrix}$$


$$R_{2}^{T}\left( \gamma \right) = \begin{bmatrix} \text{cosγ} & 0 & \text{sinγ} \\ 0 & 1 & 0 \\ - sin\gamma & 0 & \text{cosγ} \\ \end{bmatrix}$$


$$R_{2}^{}\left( - \gamma \right) = \ \begin{bmatrix} \text{cosγ} & 0 & \text{sinγ} \\ 0 & 1 & 0 \\ - sin\gamma & 0 & \text{cosγ} \\ \end{bmatrix}$$

To sum up the proof:


R21(γ)=R2T(γ)=R2(γ)

For i=3, z-axis:

R3(α)=$\begin{bmatrix} \text{cosα} & \text{sinα} & 0 \\ - sin\alpha & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$

Det R3(α)= $\left| \begin{matrix} \text{cosα} & \text{sinα} & 0 \\ - sin\alpha & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right|$= cos2α+ sin2α=1

M11=$\left| \begin{matrix} \text{cosα} & 0 \\ 0 & 1 \\ \end{matrix} \right|$= cosα M12=(-1)3$\left| \begin{matrix} - sin\alpha & 0 \\ 0 & 1 \\ \end{matrix} \right| = sin\alpha$ M13=$\left| \begin{matrix} - sin\alpha & \text{cosα} \\ 0 & 0 \\ \end{matrix} \right|$=0

M21=(-1)3$\left| \begin{matrix} \text{sinα} & 0 \\ 0 & 1 \\ \end{matrix} \right| = - sin\alpha$ M22=$\left| \begin{matrix} \text{cosα} & 0 \\ 0 & 1 \\ \end{matrix} \right|$=cosα M23=$\left| \begin{matrix} \text{cosα} & \text{sinα} \\ 0 & 0 \\ \end{matrix} \right|$=0

M31=$\left| \begin{matrix} \text{sinα} & 0 \\ \text{cosα} & 0 \\ \end{matrix} \right|$=0 M32=$\left| \begin{matrix} \text{cosα} & 0 \\ - sin\alpha & 0 \\ \end{matrix} \right|$=0 M33=$\left| \begin{matrix} \text{cosα} & \text{sinα} \\ - sin\alpha & \text{cosα} \\ \end{matrix} \right|$= 1

M=$\begin{bmatrix} \text{cosα} & \text{sinα} & 0 \\ - sin\alpha & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$


$$R_{3}^{- 1}\left( \alpha \right) = \frac{1}{\det{R_{3}\left( \alpha \right)}}M^{T} = \begin{bmatrix} \text{cosα} & - sin\alpha & 0 \\ \text{sinα} & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$$


$$R_{3}^{T}\left( \alpha \right) = \begin{bmatrix} \text{cosα} & - sin\alpha & 0 \\ \text{sinα} & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$$


$$R_{3}^{}\left( - \alpha \right) = \ \begin{bmatrix} \text{cosα} & - sin\alpha & 0 \\ \text{sinα} & \text{cosα} & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$$

To sum up the proof:


R31(α)=R3T(α)=R3(α)


Wyszukiwarka

Podobne podstrony:
Esej Matrix rot
Esej Matrix rot
Esej o chrześcijaństwie
esej rodzina, Pedagogika, socjologia edukacji
esej z psychiatrii, PIELĘGNIARSTWO ROK 3 LICENCJAT
SKŁADANIE EWOLUCYJNEJ MOZAIKI esej
Dola ateisty esej
O zakładzie Pascala słów kilka esej
matrix, 5d , 2002 2010
Euro ratunek czy katastrofa esej id
Esej Współczesne Kierunki Wychowania
„Mądrość, która chadza w parze ze skromnością i poczuciem humoru” Esej Leszka Kołakowskiego O podróż
Esej - zaliczenie wersja robocza, ZARZĄDZANIE, Zarządzanie przedsiębiorstwem
esej manipulacja, Pedagogika, socjologia edukacji
Zasiłki w Polsce i w Wielkiej Brytanii - esej, Politologia - pliki
komunikacyjne esej, Studia, Sem 5, SEM 5 (wersja 1), Budownictwo Komunikacyjne, budownictwo komunika
esej rozwojowa film

więcej podobnych podstron