/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
1
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
45
10
– 71,(13)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
45
U8
– 71,(13)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–34640
8
*105336
8
)
mod 101
8
=
(3–104
10
)*45351
10
mod 99
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 0 1 0 1 0 1 1 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 0 1 0 1
1 0 1 0 1
×
1 0 1 1 1
×
1 0 1 1 1
0
5.(4p) Stosuj
ą
c metod
ę
dzielenia nieodtwarzaj
ą
cego oblicz 3 pierwsze reszty i 3 pierwsze cyfry ilorazu
====
−−−−
D
X =
0, 0
1 1
1
: 1, 0
1
0 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................
/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
2
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
42
10
– 15,(74)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
42
U8
– 15,(74)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–34630
8
*103336
8
)
mod 77
8
=
(5–104
10
)*45351
10
mod 101
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 1 1 0 1 0 1 1 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 0 0 1 1
1 0 0 1 1
×
1 0 1 1 1
×
1 0 1 1 1
0
5.(4p) Metod
ą
dzielenia nieodtwarzaj
ą
cego oblicz 4 znacz
ą
ce cyfry ilorazu liczb danych w kodzie U2:
====
−−−−
D
X =
0, 0
1 0
1
: 1, 0
0
0 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................
/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
3
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
47
10
– 10,(71)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
47
U8
– 10,(71)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–23FC2
16
*9667
16
)
mod 0FF
16
=
(5–103
10
)*6058
10
mod 101
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 0 1 1 1 0 1 0 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 0 1 1 1
1 0 1 1 1
×
1 0 1 0 1
×
1 0 1 0 1
0
5.(4p) Metod
ą
dzielenia nieodtwarzaj
ą
cego oblicz 4 znacz
ą
ce cyfry ilorazu liczb danych w kodzie U2:
====
−−−−
D
X =
1, 0
1 1
1
: 0, 1
1
0 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................
/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
4
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
64
10
– 41,(67)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
64
U8
– 41,(67)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–33046
8
*331036
8
)
mod 77
8
=
(6–106
10
)*45153
10
mod 101
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 0 1 0 0 0 1 1 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 0 1 1 1
1 0 1 1 1
×
1 0 0 1 1
×
1 0 0 1 1
0
5.(4p) Metod
ą
dzielenia nieodtwarzaj
ą
cego oblicz 4 znacz
ą
ce cyfry ilorazu liczb danych w kodzie U2:
====
−−−−
D
X =
1, 0
1 1
1
: 0, 1
0
1 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................
/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
5
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
14
10
– 27,(21)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
14
U8
– 27,(21)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–33046
8
*361033
8
)
mod 77
8
=
(1–103
10
)*45953
10
mod 101
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 0 1 0 1 0 1 1 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 0 1 0 1
1 0 1 0 1
×
1 0 0 1 1
×
1 0 0 1 1
0
5.(4p) Metod
ą
dzielenia nieodtwarzaj
ą
cego oblicz 4 znacz
ą
ce cyfry ilorazu liczb danych w kodzie U2:
====
−−−−
D
X =
1, 0
1 1
1
: 1, 0
1
0 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................
/20
Imi
ę
Nazwisko
nr indeksu
pkt
ocena
6
Janusz Biernat, ARYTMETYKA – Kolokwium I
5 grudnia 2003
10–3,0; 14–4,0; 18–5,0
1.(4p) Zapisz w systemie uzupełnieniowym do 2 (U2), z dokładno
ś
ci
ą
do 10 bitów cz
ę
ś
ci ułamkowej oraz
z czterema bitami cz
ę
ś
ci całkowitej wynik działania:
27
10
– 14,(60)
10
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
27
U8
– 14,(60)
U8
= ……………= | | | | | | | |,| | | | | | | | | | |
U2
2.(4p) Stosuj
ą
c reguły arytmetyki resztowej oblicz reszty całkowite (dodatnie lub ujemne)
(–4CA2F
16
*936A
16
)
mod 0FF
16
=
(8–111
10
)*16058
10
mod 101
10
=
3.(4p) Oblicz z dokładno
ś
ci
ą
do 5 cyfr znacz
ą
cych
√
0, 0 0 1 0 1 0 1 1 1 1 =
4.(4p) Wykonaj dwoma sposobami mno
ż
enie pisemne liczb dwójkowych w kodzie uzupełnieniowym (U2)
1 1 0 0 1
1 1 0 0 1
×
1 0 1 1 1
×
1 0 1 1 1
0
5.(4p) Metod
ą
dzielenia nieodtwarzaj
ą
cego oblicz 4 znacz
ą
ce cyfry ilorazu liczb danych w kodzie U2:
====
−−−−
D
X =
1, 0
0 1
1
: 1, 0
1
0 1
====
++++
D
+D /– D
k=
q
0
=
q
1
=
q
2
=
q
3
=
Iloraz jest równy Q = ................................