MechKw i06

background image

 

 

The Uncertainty Principle   

Consider a large number N  of

 identical boxes with identical 

particles all described by the 

same statefunction 

Ψ

(x,y ,z) :

Consider the observable A represented by the operator       ˆ 

A    

Let   [ˆ 

A ,   ˆ 

H ] 

 0

Thus the system described by   

Ψ

 do not   

have sharp value for A.      

The average (expectation ) value is defined by :    

< A >=  

Ψ

*

ˆ 

Ψ

d

τ

   

Appendix B

background image

 

 

<A>

A1

A2 An

The Uncertainty Principle   

The measurement of A on each of the n identical     

systems will give a different outcome    A  

i

                 

We define the variance as  :

1

n

i

A

i

− <

A

>

(

)

2

=

σ

A

2

=

(

A)

2

σ

A

2

= Ψ

*

( ˆ 

− <

A

>

)

2

Ψ

d

τ

   

= Ψ

*

( ˆ 

2

2

<

A

>

ˆ 

+ <

A

>

2

)

Ψ

d

τ

   

= Ψ

*

ˆ 

2

Ψ

d

τ −

2

<

A

> Ψ

*

ˆ 

Ψ

d

τ+ <

A

>

2

Ψ

*

Ψ

d

τ

   

       

= Ψ

*

ˆ 

2

Ψ

d

τ

− <

A

>

2

=

 

<

A

2

> − <

A

>

2

Appendix B

background image

 

 

The Uncertainty Principle   

We define  :

A  =  

σ

A

2

as the standard deviation   

We shall later show that two for two observables A and B     

A

B  =

1

2i

Ψ

*

[ ˆ 

A , ˆ 

B ] 

Ψ

d

τ

Consider as an example  ˆ 

x  and  ˆ 

x

[ˆ 

x , ˆ 

x

]

=

ih

Since  :

x

p

x

  =

1

2i

Ψ

*

[ˆ 

x , ˆ 

x

Ψ

d

τ

=

1

2

h

We can not simultaniously obtain sharp values

for x and p

x

    

Appendix B

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 

background image

 

 


Document Outline


Wyszukiwarka

Podobne podstrony:
MechKw i06
MechKw i04
MechKw i03
MechKw i05
MechKw i11
MechKw i11
MechKw 03
MechKw 10
MechKw pytania
MechKw i07
MechKw i12
MechKw 06
MechKw 07
MechKw i13
pdt i06 ver 03
MechKw i09
MechKw i04

więcej podobnych podstron