background image

Prawdopodobieństwo warunkowe 
 
Przykład 1. 
W jednej urnie są tylko kule białe, a w drugiej czarne (w kaŜdej z urn jest co najmniej dwie 
kule). Wybieramy losowo urnę i wyciągamy z niej kolejno dwie kule. Obliczyć 
prawdopodobieństwo, Ŝe za drugim razem zostanie wylosowana kula biała, oraz 
prawdopodobieństwo tego, Ŝe za drugim razem wyciągnęliśmy kulę biała, jeśli za pierwszym 
razem wylosowaliśmy kulę białą. 
 

A

 - zdarzenie polegające na wylosowaniu kuli białej za pierwszym razem, 

B

 - zdarzenie polegające na wylosowaniu kuli białej za drugim  razem. 

( )

2

1

=

B

P

, poniewaŜ wybór urny determinuje wybór koloru kuli. 

(

)

1

/

=

A

B

P

 Jeśli wiemy, Ŝe zaszło zdarzenie  A , to druga wylosowana kula będzie na pewno 

biała. 
 
Wniosek 1. 
Przykład pokazuje, Ŝe zajście jakiegoś zdarzenia moŜe zmienić prawdopodobieństwo zajścia 
innego zdarzenia. 
 
Def. 
Niech 

(

)

P

S,

,

 przestrzeń probabilistyczna, 

S

B

A

,

 oraz 

( )

0

>

B

P

Prawdopodobieństwem warunkowym zajścia zdarzenia  A  pod warunkiem, Ŝe zaszło 

zdarzenie  B  nazywamy liczbę 

(

)

( )

B

P

B

A

P

 i oznaczamy 

(

)

B

A

P

/

 
Uwaga 1. 
Jeśli 

( )

0

=

B

P

, to przyjmujemy 

(

)

( )

A

P

B

A

P

=

/

 
Uwaga 2. 

Odwzorowanie 

( )

R

S

B

P

~

:

,

 jest miarą unormowaną na 

(

)

S

,

 przy ustalonym 

S

B ∈

 

takim, Ŝe 

( )

0

>

B

P

 
Dowód 
Ad. 1. 

(

)

( )

?

0

/

B

A

P

S

A

 

Weźmy dowolne 

S

B

S

A

∈ ,

 takie, Ŝe 

( )

0

>

B

P

PoniewaŜ  S  jest 

σ

- algebrą, to 

S

B

A

,

Wykorzystując prawo de Morgana otrzymujemy 

S

B

A

B

A

B

A

=

=

 czyli 

(

)

(

)

( )

0

/

=

A

P

B

A

P

B

A

P

, gdyŜ 

(

)

0

∩ B

A

P

 na podstawie pierwszego aksjomatu w definicji 

miary unormowanej. 
Ad. 2. 

(

)

( )

?

1

/

=

Ω B

P

 

(

)

(

)

( )

( )

( )

1

/

=

=

=

B

P

B

P

B

P

B

P

B

P

background image

Ad. 3. 

( ) ( )

?

,

,

1

1

=

=

=





=

i

i

i

i

j

i

j

i

A

P

A

P

j

i

A

A

S

A

A

N

j

i

U

 

Z definicji prawdopodobieństwa warunkowego i własności rachunku zbiorów mamy 

( )

(

)

( )

(

)

( )

B

P

B

A

P

B

P

B

A

P

B

P

B

A

P

B

A

P

i

i

i

i

i

i

i

i

=

=

=

=

=





=









=





1

1

1

1

/

U

U

U

Ostatnią równość moŜemy napisać, gdyŜ 

S

B

A

N

i

i

,

 oraz 

(

)

(

)

j

i

B

B

A

A

B

A

B

A

j

i

j

i

=

=

=

Kontynuując, otrzymujemy 

(

)

( )

(

)

( )

(

)

=

=

=

=

=

1

1

1

/

i

i

i

i

i

i

B

A

P

B

P

B

A

P

B

P

B

A

P

 
Przykład 2. 
Wybieramy jedną rodzinę spośród rodzin z dwojgiem dzieci. Obliczyć prawdopodobieństwo 
zdarzenia, Ŝe wybierzemy rodzinę, w której są dwaj chłopcy, jeśli wiemy, Ŝe w tej rodzinie  

a)  starsze dziecko jest chłopcem, 
b)  jest co najmniej jeden chłopiec. 
 

( ) ( ) ( ) (

)

{

}

d

d

c

d

d

c

c

c

,

,

,

,

,

,

,

=

 

( )

{

} ( ) ( )

{

}

(

)

( )

{

}

(

)

( ) ( )

{

}

(

)

2

1

,

,

,

,

,

,

,

/

,

2

1

4

1

=

=

=

d

c

c

c

P

c

c

P

d

c

c

c

c

c

P

( )

{

} ( ) ( ) ( )

{

}

(

)

3

1

,

,

,

,

,

/

,

=

c

d

d

c

c

c

c

c

P

 
Wniosek 2. 
Z definicji prawdopodobieństwa warunkowego mamy 

(

)

(

) ( )

B

P

B

A

P

B

A

P

/

=

 
Uogólniając, zachodzi następujący wzór 

(

)

( ) (

) (

) (

)

1

1

2

1

3

1

2

1

2

1

...

/

...

/

/

...

=

n

n

n

A

A

A

P

A

A

A

P

A

A

P

A

P

A

A

A

P

jeśli 

(

)

0

...

1

1

>

n

A

A

P

 
Dowód 
ZauwaŜmy, Ŝe 

1

2

1

2

2

1

1

2

1

...

...

...

A

A

A

A

A

A

A

A

A

n

n

zatem, na podstawie monotoniczności miary  P  otrzymujemy, 

(

)

(

)

(

)

( )

1

2

1

2

2

1

1

2

1

...

...

...

0

A

P

A

A

P

A

A

A

P

A

A

A

P

n

n

<

Rozpisując prawą stronę dowodzonego wzoru mamy 

( ) (

)

( )

(

)

(

)

(

)

(

)

1

2

1

1

2

1

2

1

2

1

3

1

1

2

1

...

...

...

n

n

n

A

A

A

P

A

A

A

A

P

A

A

P

A

A

A

P

A

P

A

A

P

A

P

Upraszczając wyraŜenia dostajemy lewą stronę. 
 
 

background image

Uwaga 3. 
PowyŜsze twierdzenie, to uzasadnienie metody drzewek (stochastycznych) stosowanej w 
rozwiązywaniu wielu zadań. Liczby przypisywane gałęziom, to są prawdopodobieństwa 
warunkowe, a gdy poruszmy się wzdłuŜ gałęzi, to mnoŜymy te prawdopodobieństwa. 
 
Prawdopodobieństwo całkowite (zupełne) 
 
Def. 
Niech 

(

)

P

S,

,

 przestrzeń probabilistyczna. 

Rodzinę zdarzeń 

{ }

n

i

i

B

1

=

 nazywamy rozbiciem (rozkładem) zbioru  Ω , jeśli 

{

}

=

=

=

U

n

i

i

j

i

B

j

i

B

B

n

j

i

1

,

,

,...,

1

,

 
Twierdzenie 1. (o prawdopodobieństwie całkowitym, zupełnym) 

Jeśli rodzina zdarzeń 

{ }

n

i

i

B

1

=

 będzie rozbiciem zbioru  Ω  takim, Ŝe 

{

}

( )

0

,...,

1

>

i

B

P

n

i

to  

( )

(

) ( )

i

n

i

i

B

P

B

A

P

A

P

S

A

=

=

1

/

Dowód 
Weźmy dowolne 

S

A∈

  

( )

(

)

(

)

(

)

(

) ( )

=

=

=

=

=

=





=





=

=

n

i

i

i

n

i

i

n

i

i

n

i

i

B

P

B

A

P

B

A

P

B

A

P

B

A

P

A

P

A

P

1

1

1

1

/

U

U

 
Uwaga 4. 

Twierdzenie powyŜsze obowiązuje równieŜ w przypadku, gdy 

U

=

=

1

i

i

B . 

 
Twierdzenie 2. (wzór Bayesa) 

Jeśli rodzina zdarzeń 

{ }

n

i

i

B

1

=

 będzie rozbiciem zbioru  Ω  takim, Ŝe 

{

}

( )

0

,...,

1

>

i

B

P

n

i

 

oraz 

( )

0

>

A

P

, to 

{

}

(

) (

) ( )

( )

A

P

B

P

B

A

P

A

B

P

n

j

j

j

j

/

/

,...,

1

=

 
Zdarzenia 

j

B  nazywamy hipotezami (przyczyny zajścia zdarzenia  A , które nazywane jest 

skutkiem), 

( )

A

P

 to prawdopodobieństwo skutku (a priori). Jeśli zdarzenie  A  zaszło, 

interesuje nas prawdopodobieństwo, Ŝe zdarzenie 

j

B  było przyczyną zajścia zdarzenia  A , 

czyli 

(

)

A

B

P

j

/

 (prawdopodobieństwo a posteriori). 

 
Przykład 3. 
Dane są dwie urny z kulami: urna 

1

B

 zawiera 6 czarnych i 9 białych kul, a urna 

2

B

 5 

czarnych i 15 kul białych. Wylosowano białą kulę. Jakie jest prawdopodobieństwo, Ŝe 
pochodzi ona z urny 

1

B

A  - zdarzenie polegające na wyciągnięciu kuli białej, 

1

B

 - zdarzenie polegające na losowaniu z urny pierwszej, 

2

B

 - zdarzenie polegające na losowaniu z urny drugiej. 

background image

( )

( )

2

1

2

1

=

=

B

P

B

P

(

)

15

9

/

1

=

B

A

P

(

)

20

15

/

2

=

B

A

P

( )

(

) ( ) (

) ( )

40

27

2

1

20

15

2

1

15

9

/

/

2

2

1

1

=

+

=

+

=

B

P

B

A

P

B

P

B

A

P

A

P

(

)

(

) ( )

( )

9

4

/

/

1

1

1

=

=

A

P

B

P

B

A

P

A

B

P

 
NiezaleŜność zdarzeń 
 
Def. 
Niech 

(

)

P

S,

,

 przestrzeń probabilistyczna. 

Zdarzenia losowe 

S

B

A

,

 są niezaleŜne, jeśli 

(

)

( ) ( )

B

P

A

P

B

A

P

=

 
Uogólniając mówimy, Ŝe 
 
Zdarzenia 

n

A

A

A

,...,

,

2

1

 są niezaleŜne, jeśli 

(

)

( )

( )

s

s

k

k

k

k

s

s

A

P

A

P

A

A

P

n

k

k

k

k

...

...

...

1

:

,...,

1

1

1

1

=

<

<

Zdarzenia 

,...

,

2

1

A

A

 są niezaleŜne, jeśli 

n

A

A

A

n

,...,

,

2

2

1

 są niezaleŜne. 

 
Uwaga 5. 
Jeśli dla pewnego układu wskaźników 

(

)

n

k

k

k

s

s

1

,...,

1

  

(

)

( )

( )

s

s

k

k

k

k

A

P

A

P

A

A

P

...

...

1

1

to zdarzenia 

n

A

A

A

,...,

,

2

1

 nazywamy zaleŜnymi. 

 
Przykład 4. 
Prawdopodobieństwem przekazania sygnału przez jeden przekaźnik jest 

9

,

0

=

p

. Przekaźniki 

działają niezaleŜnie, tzn. zadziałanie jednego z nich nie ma wpływu na zadziałanie drugiego. 
Obliczyć prawdopodobieństwo przekazania sygnału przy połączeniu 

a)  szeregowym dwu przekaźników (muszą działać oba przekaźniki), 
b)  równoległym dwu przekaźników (wystarczy, aby jeden z przekaźników 

działał). 

 
Niech  A  - oznacza zdarzenie polegające na przekazaniu sygnału przez przekaźnik oznaczony 
litera  A , natomiast  B  przez przekaźnik  B . 
Przy połączeniu szeregowym sygnał zostanie przekazany, jeśli nastąpi zdarzenie  A  i 
zdarzenie  B , czyli iloczyn 

B

A ∩

. PoniewaŜ zdarzenia te są niezaleŜne zatem 

(

)

( ) ( )

81

,

0

2

=

=

=

p

B

P

A

P

B

A

P

Przy połączeniu równoległym sygnał zostanie przekazany, jeśli nastąpi zdarzenie  A  lub 
zdarzenie  B , czyli suma 

B

A ∪

. PoniewaŜ zdarzenia są niezaleŜne mamy 

(

)

( ) ( ) ( ) ( )

99

,

0

2

2

=

=

+

=

p

p

B

P

A

P

B

P

A

P

B

A

P

Uwaga 6. 
Niezawodność elementu określamy jako prawdopodobieństwo tego, Ŝe wykonuje on 
poprawnie swoja pracę w ciągu pewnego określonego czasu. 
Wówczas powyŜszy przykład moŜna sformułować następująco: 
Obliczyć niezawodność układu złoŜonego z dwu przekaźników połączonych szeregowo lub 
równolegle, przy załoŜeniu, Ŝe przekaźniki działają niezaleŜnie i niezawodność kaŜdego z 
nich równa jest  p .