2003 01 25 prawdopodobie stwo i statystykaid 21695

background image

Egzamin dla Aktuariuszy z 25 stycznia 2003 r.

Prawdopodobieństwo i Statystyka

Zadanie 1

Innymi słowami: losujemy do momentu pierwszej czarnej, ile średnio będzie białych (patrząc
z drugiej strony)

b,c i dalej









=









=









=









=

15

25

9

9

)

15

(

,

15

25

9

10

)

14

(

,...,

15

25

9

22

)

2

(

,

15

25

9

23

)

1

(

P

P

P

P

liczymy na piechotę:

11

15

=

EX


Zadanie 2

(

) (

)

=

=

=

+

=

+

X

t

t

Y

P

tY

t

X

P

Y

X

t

X

P

t

Y

X

X

P

t

1

)

1

(

)

(

)

1

,

0

(

4

8

47

6

∫ ∫

=

=

=

=

=

t

x

x

t

t

t

t

t

t

t

t

t

x

x

dx

t

x

dydx

0

1

1

0

2

0

2

2

2

2

2

2

g(z)=1 dla

1

0

z


Zadanie 3

0

3

=

µ

dla symetrycznych

3

2

3

3

2

3

µ

m

µ

m

µ

+

=

[

]

3

2

3

2

3

)

)(

2

)(

1

(

)

1

(

3

)

2

)(

1

(

)

1

(

3

EX

n

n

n

EXEX

n

n

nEX

X

X

X

n

n

n

X

X

n

n

nX

E

ODP

k

j

i

j

i

+

+

=

+

+

=

}

(

)

2

3

3

2

2

3

2

0

3

3

3

2

3

2

3

µσ

µ

µ

µ

σ

µ

µ

m

µ

µ

EX

+

=

+

=

+

=

=

background image

2

2

2

µ

σ

EX

+

=

(

)

(

)

=

+

+

+

+

=

3

2

2

2

3

)

2

)(

1

(

)

1

(

3

3

µ

n

n

n

µ

σ

µ

n

n

µσ

µ

n

ODP

(

)(

) (

)

=

+

+

+

+

+

=

3

2

2

3

3

2

2

2

3

2

2

3

3

3

µ

n

n

n

n

µ

µσ

n

n

µσ

n

µ

n

(

)

2

2

2

3

3

2

3

3

3

2

3

2

2

2

2

3

3

2

3

3

3

3

3

3

µ

n

σ

µ

n

µ

n

µ

n

µ

n

µ

n

µσ

n

µ

n

µσ

n

µσ

n

µ

n

+

=

+

+

+

+

+

=


Zadanie 4

(

)

2

2

2

!

10

Π

=

i

µ

X

i

e

L

(

)

2

2

!

10

ln

ln

2



Π

=

i

µ

X

L

i

(

)

(

)

=

=

=

=

10

1

0

2

2

1

i

i

i

µ

X

i

µ

X

i

µ

max

0

2

<

∂∂

µ

=

0

55µ

iX

i

55

ˆ

=

i

iX

µ

=

=

µ

µ

i

µ

E

55

1

ˆ

=

=

55

1

1

55

1

ˆ

var

2

2

i

i

µ

(

)

(

)

(

)

2643

,

0

55

96

,

1

95

,

0

55

ˆ

ˆ

ˆ

=

=

=

=

+

d

d

d

X

P

d

µ

µ

P

d

µ

µ

d

µ

P


Zadanie 5

i

i

i

X

Z

Y

=

+

( ) ( )

cov

2

var

var

var

)

(

)

(

)

,

(

)

(

)

(

+

+

=

+

Z

Y

X

λ

Poisson

Z

Y

S

S

S

S

48

47

6

2

)

(

var

EY

λ

S

Y

=

2

)

(

var

EZ

λ

S

Z

=

(

)

2

)

(

)

(

var

EX

λ

S

S

Z

Y

=

+

2

2

2

)

(

2

EY

XY

E

EX

EZ

+

=

+

=

c

c

µ

x

µ

x

e

µ

c

e

µ

x

EY

0

2

2

2

1

1

+

=

c

c

µ

x

µ

x

e

µ

cx

e

µ

x

XY

E

0

2

1

1

)

(

background image

cov

2

1

2

1

2

2

2

2

+



+

=

c

c

µ

x

µ

x

EX

e

µ

cx

e

µ

c

λ

EX

λ



+

+

=

+

c

c

c

c

µ

x

µ

x

µ

x

µ

x

µ

x

Z

Y

e

µ

cx

e

µ

x

e

µ

x

e

µ

c

e

µ

x

λ

S

S

0

0

0

2

2

2

2

)

(

)

(

1

2

1

2

1

1

2

1

2

var

var

=

=

=

=

=

=



=

µ

x

µ

x

c

c

µ

x

µ

x

e

v

u

e

µ

v

x

u

e

µ

c

e

µ

cx

λ

1

1

1

1

cov

2

µ

c

µ

c

µ

c

µ

c

ce

λµ

e

c

ce

µ

e

c

λ

=



+

=

2

2


Zadanie 6

)

1

,

4

(

2

1

Γ

+

=

X

X

X

)

1

,

2

(

3

Γ

=

X

Y

(

)

5

,

5

3

2

1

2

1

>

+

+

+

X

X

X

X

X

P

[

]

[

]

∫ ∫

=

+

=

=

=

5

0 5

5

0

5

0

)

5

(

)

5

(

3

5

3

3

)

5

(

6

1

6

1

6

1

x

x

x

x

x

y

y

x

x

y

e

e

x

e

x

e

ye

e

x

dydx

e

x

ye

ODP

=

=





=

=

=

5

0

5

5

4

4

4

5

5

0

5

4

5

3

5

12

625

2

1

5

6

1

5

5

2

3

6

1

5

4

6

6

1

)

6

(

6

1

e

e

e

x

x

e

x

x

e


Zadanie 7

2

2

)

(

)

10

(

λ

λ

λ

m

λ

P

S

+

=

2

2

100

10

λ

λ

ES

+

=

λ

ES

10

=

odpowiedź C prawidłowa bo:

2

2

2

9

,

0

1

,

0

10

100

9

100

100

10

λ

λ

λ

λ

λ

λ

λ

λ

+

=

+

+

=

+

+




background image

Zadanie 8

(

) (

) (

)

(

)

1

9

,

0

1

1

1

=

=

=

=

=

=

i

i

i

i

X

P

X

P

Z

P

Y

P

(

)

(

)

1

9

,

0

1

0

=

=

=

i

i

X

P

Y

P

(

) (

)

(

)

(

)

1

1

0

0

,

1

1

1

1

=

=

=

=

=

=

=

>

+

+

+

n

n

n

n

n

n

n

Y

P

Y

Y

P

Y

Y

P

Y

Y

P

(

) (

)

(

)

=

=

=

=

=

=

=

=

=

=

=

=

+

+

+

+

1

,

1

1

,

1

1

1

,

1

0

1

0

1

1

1

1

n

n

n

n

n

n

n

n

n

X

Z

X

Z

P

X

Z

Y

P

Y

Y

P

(

)

(

)

28

,

0

8

,

0

9

,

0

1

1

1

1

1

11

1

1

=

=

=

=

=

=

+

+

4

4

4

8

4

4

4

7

6

p

n

n

n

X

X

P

Z

P

(

) (

) (

)

(

)

1

9

,

0

1

1

1

=

=

=

=

=

=

n

n

n

n

X

P

X

P

Z

P

Y

P

(

)

126

,

0

5

,

0

9

,

0

28

,

0

1

9

,

0

28

,

0

lim

1

=

=

4

8

47

6

p

n

n

X

P

1

bo

5

,

0

8

,

0

2

,

0

2

,

0

8

,

0

1

0

1

0

1

1

0

0

1

0

=

+

=

=

=

+

=

+

p

p

p

p

p

p

p

p

p

p


Zadanie 9

1

2

µ

µ

>

(

)

(

)

=

=

Π

Π

+

i

n

µ

X

µ

n

µ

X

µ

µ

X

n

µ

X

n

X

STAT

e

e

e

i

i

i

i

2

2

2

2

2

1

1

2

2

2

2

1

2

2

2

1

2

1

(

)

025

,

0

.

1

0

=

>

t

X

P

i

n

n

t

n

n

t

n

n

t

X

P

3

96

,

1

96

,

1

3

025

,

0

3

0

+

=

=

=





>

(

)

(

)

3

ˆ

3

96

,

1

3

96

,

1

>

=





+

>

=

+

>

=

µ

n

X

n

n

X

K

n

czyli (A) prawidłowa


Zadanie 10

µ

p

p

EX

EN

ES

N

=

=

1

p

N

P

N

P

=

=

=

>

1

)

0

(

1

)

0

(

(

)

(

)





>

=

=

>

µ

p

wykl

N

S

p

µ

p

µ

p

p

N

S

E

n

N

0

1

1

1

0

(

) (

)

µ

p

s

µ

ps

µ

s

µ

ps

µ

s

S

N

N

e

e

p

e

µ

p

p

p

e

µ

s

f

N

P

N

S

f

s

S

N

P

N

)

1

(

)

1

(

)

1

(

1

)

(

)

1

(

1

1

+

=

=

=

=

=

=

=

=

background image

(

)

)

1

(

)

0

(

0

)

(

p

e

µ

p

N

P

N

s

f

s

f

µ

ps

S

N

=

>

>

=


Wyszukiwarka

Podobne podstrony:
2003.01.25 prawdopodobie stwo i statystyka
2002 01 12 prawdopodobie stwo i statystykaid 21637
2003.05.17 prawdopodobie stwo i statystyka
2003.12.06 prawdopodobie stwo i statystyka
2002.01.12 prawdopodobie stwo i statystyka
2003 12 06 prawdopodobie stwo i statystykaid 21710
2003 05 17 prawdopodobie stwo i statystykaid 21698
2000.01.15 prawdopodobie stwo i statystyka
2005.01.17 prawdopodobie stwo i statystyka
2003.10.11 prawdopodobie stwo i statystyka
1997.01.18 prawdopodobie stwo i statystyka
2000 01 15 prawdopodobie stwo i statystykaid 21565
2003 10 11 prawdopodobie stwo i statystykaid 21705
2007 01 08 prawdopodobie stwo i statystykaid 25641
2005 01 17 prawdopodobie stwo i statystykaid 25338
2002 01 12 prawdopodobie stwo i statystykaid 21637

więcej podobnych podstron