Mathcad projekt2 xmcd

background image

Katarzyna Siejka, gr 5
Praca projektowa nr 2, temat 58

P

40kN

:=

q

10

kN

m

:=

l

6m

:=

v

0.3

:=

E

210000MPa

:=

odl

8

11

l

4.364 m

=

:=

A

0.7cm

2

2 10

30

+

(

)

0.9 15

cm

2

+

0.8cm

2

30

2 15

+

(

)

+

96.5 cm

2

=

:=

Sy1

2

1

2

10

(

)

10

0.7

1

2

15

2

0.9

+

15 30

0.8

+

2 0.5

30

15

+

(

)

15

[

] 0.8

+

931.25

=

:=

Sy1

931.25cm

2

:=

z0

Sy1

A

9.65

=

:=

część o grubości 0.7

Jy1

0.7cm

4

30

9.65

(

)

2

2 10

9.65

(

)

2

+

2 0.5

10

(

)

2

2

3

10

+





3725.954 cm

4

=

:=

Jz1

0.7cm

4

2 15

10

15

0.5 15

15

2

3

15

+

0.5 15

15

2

3

15





4725 cm

4

=

:=

część o grubości 0.9

Jy2

0.9cm

4

0.5

9.65

15

2

3

9.65

1

3

5.35

+





0.5 5.35

15

2

3

5.35

1

3

9.65





+





315.529 cm

4

=

:=

Jz2

0cm

4

:=

część o grubości 0.8

Jy3

0.8cm

4

5.35

2

30

2

5.35

2

15

0.5 15

2

2

3

15

+





+





3173.88 cm

4

=

:=

Jz3

0.8cm

4

2 15

15

15

0.5 15

15

2

3

15

+

0.5 15

15

2

3

15





7200 cm

4

=

:=

Jy

Jy1

Jy2

+

Jy3

+

7215.363 cm

4

=

:=

Jz

Jz1

Jz2

+

Jz3

+

0 m

4

=

:=

y

B

0cm

:=

z

B

9.65

cm

:=

ω5

1

15

− cm 15

cm

225

cm

2

=

:=

ω2

1

10

− cm 15

cm

150

cm

2

=

:=

ω4

1

ω5

1

15cm 15

cm

+

0 m

2

=

:=

1.y

0.7cm

10cm ω2

1

15

cm

(

)

0.8cm

ω5

1

15

cm 15

cm

ω5

1

15

cm

2

3

15

cm

+





+

832.5

m cm

4

=

:=

z

A

z

B

1.y

Jz

2.669

cm

=

:=

background image

ω1

15cm

9.65cm

z

A

+

(

)

104.717 cm

2

=

:=

ω2

ω1

10cm 15

cm

45.283

cm

2

=

:=

ω5

15

− cm

5.35cm

z

A

(

)

120.283

cm

2

=

:=

ω4

ω5

15cm 15

cm

+

104.717 cm

2

=

:=

cześć o grubości 0.7

Jω1

0.7cm

ω2 10

cm

2

3

ω2

1

3

ω1

+





ω1 10

cm

2

3

ω1

1

3

ω2

+





+

ω1

2

15

cm

2

3

+





:=

część o grubości 0.8

Jω3

0.8cm

ω5 15

cm

2

3

ω5

1

3

ω4

+





ω4 15

cm

2

3

ω4

1

3

ω5

+





+

ω5

2

15

cm

2

3

+





:=

Jω1

Jω3

+

333820.755 cm

6

=

:=

m

x

q 6.98

cm

0.698

kN m

m

=

:=

G

E

2

1

v

+

(

)

80.769 GPa

=

:=

E

1

E

1

v

2

230.769 GPa

=

:=

M

P 10

cm

4 kN m

=

:=

K

S

1

1

3

0.7cm

(

)

3

50

cm

0.9cm

(

)

3

15

cm

+

0.8cm

(

)

3

60

cm

+





19.602 cm

4

=

:=

α

G K

S

E

1

0.005

1

cm

=

:=

background image
background image

1

Y1 ζ

( )

cosh ζ

( )

:=

Y2 ζ

( )

sinh ζ

( )

:=

Y3 ζ

( )

1

cosh ζ

( )

:=

Y4 ζ

( )

ζ

sinh ζ

( )

:=

l

6 m

=

Y5 ζ

( )

1

2

ζ

2

cosh ζ

( )

:=

a2

8

11

l

4.364 m

=

:=

ξ

α l

:=

a3

0

:=

a4

a2

:=

Given

B0

0kN cm

2

:=

Mx0

0kN

:=

B0

1

G K

S

Y3 ξ

( )

Mx0

1

G K

S

α

Y4 ξ

( )

+

M

G K

S

α

Y4 ξ

a2 α

(

)

m

x

G K

S

α

2

Y5 ξ

α a4

(

)

Y5 ξ

a3 α

(

)

(

)

+

...

0

=

B0 Y1 ξ

( )

Mx0

1

α

Y2 ξ

( )

+

M

α

Y2 ξ

α a2

(

)

m

x

α

2

Y3 ξ

α a4

(

)

Y3 ξ

a3 α

(

)

(

)

0

=

Find B0 Mx0

,

(

)

2228.1260643808650121 N

m

2

2275.3170839183874378 J

m

1470.1286048954912396 J

2309.6022779477743304 N

m

+

B0

2228.1260643808650121

N m

2

2275.3170839183874378

J m

+

45034.431

kN cm

2

=

:=

Mx0

1470.1286048954912396 J

2309.6022779477743304N m

+

377.973 kN cm

=

:=

B0 Y1 ξ

( )

Mx0

1

α

Y2 ξ

( )

+

M

α

Y2 ξ

α a2

(

)

m

x

α

2

Y3 ξ

α a4

(

)

Y3 ξ

a3 α

(

)

(

)

0 kN cm

2

=

x

0

1

100

l

,

odl

..

:=

x1

odl odl

1

100

odl

+

,

l

..

:=

θ x

( )

B0

1

G K

S

Y3 x α

(

)

Mx0

1

G K

S

α

Y4 x α

(

)

+

m

x

G K

S

α

2

Y5 x α

x α

(

)

Y5 x α

a3 α

(

)

(

)

+

...

:=

θ1 x1

(

)

B0

1

G K

S

Y3 x1 α

(

)

Mx0

1

G K

S

α

Y4 x1 α

(

)

+

M

G K

S

α

Y4 x1 α

a2 α

(

)

m

x

G K

S

α

2

Y5 x1 α

a4 α

(

)

Y5 x1 α

a3 α

(

)

(

)

+

...

:=

background image

0

2

4

6

0.05

0.1

0.15

0.2

θ x

( )

θ1 x1

(

)

x x1

,

B x

( )

B0 Y1 x α

(

)

Mx0

1

α

Y2 x α

(

)

+

m

x

α

2

Y3 x α

x α

(

)

Y3 x α

a3 α

(

)

(

)

:=

B1 x1

(

)

B0 Y1 x1 α

(

)

Mx0

1

α

Y2 x1 α

(

)

M

α

Y2 x1 α

a2 α

(

)

m

x

α

2

Y3 x1 α

a4 α

(

)

Y3 x1 α

a3 α

(

)

(

)

+

...

:=

0

2

4

6

6

10

3

×

4

10

3

×

2

10

3

×

2 10

3

×

4 10

3

×

B x

( )

B1 x1

(

)

x x1

,

MX x

( )

Mx0

m

x

x

a3

(

)

:=

MX1 x1

(

)

Mx0

M

m

x

a4

a3

(

)

:=

background image

0

2

4

6

4

10

3

×

2

10

3

×

2 10

3

×

4 10

3

×

MX x

( )

MX1 x1

(

)

x x1

,

Ms x

( )

B0

α

Y2 x α

(

)

Mx0 Y3 x α

(

)

+

m

x

α

Y4 x α

x α

(

)

Y4 x α

α a3

(

)

(

)

+

:=

Ms1 x1

(

)

B0

α

Y2 x1 α

(

)

Mx0 Y3 x1 α

(

)

+

M Y3 x1 α

α a2

(

)

m

x

α

Y4 x1 α

α a4

(

)

Y4 x1 α

α a3

(

)

(

)

+

...

:=

0

2

4

6

1

10

3

×

500

500

Ms x

( )

Ms1 x1

(

)

x x1

,

Mω x

( )

B0 α

Y2 α x

(

)

Mx0 Y1 x α

(

)

+

m

x

α

Y2 x α

x α

(

)

Y2 x α

α a3

(

)

(

)

+

:=

ω

α

α

α

α

α

background image

Mω1 x1

(

)

B0 α

Y2 x1 α

(

)

Mx0 Y1 x1 α

(

)

+

M Y1 x1 α

α a2

(

)

m

x

α

Y2 x1 α

α a4

(

)

Y2 x1 α

α a3

(

)

(

)

+

...

:=

0

2

4

6

6

10

3

×

4

10

3

×

2

10

3

×

2 10

3

×

Mω x

( )

Mω1 x1

(

)

x x1

,

0

2

4

6

6

10

3

×

4

10

3

×

2

10

3

×

2 10

3

×

4 10

3

×

Ms x

( ) Mω x

( )

+

Ms1 x1

(

) Mω1 x1

(

)

+

x x1

,

q

10000 kg s

2

=

background image

zad 2

przekrój 10

odl

4.364 m

=

ten

10

11

l

5.455 m

=

:=

Tz

24

− kN

:=

Ty x

( )

34.18kN

q odl

:=

Ty ten

(

)

9.456

kN

=

Ty

9.456

kN

:=

My x

( )

30.35

kN m

16kN x

+

P

x

odl

(

)

:=

My ten

(

)

1328.636 kN cm

=

My

1328.636kN cm

:=

Mz x

( )

38.53kN m

34.18kN x

q odl

x

odl

2





+

:=

Mz ten

(

)

509.645

kN cm

=

Mz

509.645

kN cm

:=

B ten

(

)

53063.873 kN cm

2

=

B

53063.873kN cm

2

:=

σMy z

( )

My

Jz

z

1.114160167714884696e7 cm

kN

z

m

4

:=

σMz y

( )

Mz

Jy

y

7.0633314759923974425e6 cm

kN

y

m

4

:=

σB ω

(

)

B

ω

158959.17869153602446 ω

cm

2

kN

L

2

:=

p1

9.65

15 104.717

(

)

:=

p2

19.65

15

45.283

(

)

:=

p3

9.65

0 0

(

)

:=

p4

20.35 15 104.714

(

)

:=

p5

5.35 15

120.283

(

)

:=

pK

14.65

15 29.717

(

)

:=

pL

15.35

15

17.717

(

)

:=

σMy 5.35cm

(

)

0.596

kN

cm

2

=

σMy 9.65

cm

(

)

1.075

kN

cm

2

=

σMy 20.35cm

(

)

2.267

kN

cm

2

=

σMy 19.65

cm

(

)

2.189

kN

cm

2

=

σMz 15cm

(

)

1.059

kN

cm

2

=

σMz 15

− cm

(

)

1.059

kN

cm

2

=

σB 45.283

cm

2

(

)

7.198

kN

cm

2

=

σB 104.717cm

2

(

)

16.646

kN

cm

2

=

σB 45.283cm

2

(

)

7.198

kN

cm

2

=

σB 104.717

cm

2

(

)

16.646

kN

cm

2

=

(

)

(

)

background image

σB 120.283cm

2

(

)

19.12

kN

cm

2

=

σB 120.283

cm

2

(

)

19.12

kN

cm

2

=

σx z y

, ω

,

(

)

σMy z

( )

σMz y

( )

+

σB ω

(

)

+

:=

p1

9.65

15 104.717

(

)

:=

p1

1

9.65

15

104.717

(

)

:=

σx 9.65

cm 15cm

,

104.717cm

2

,

(

)

14.511

kN

cm

2

=

σx 9.65

cm

15

− cm

,

104.717

cm

2

,

(

)

16.661

kN

cm

2

=

p2

19.65

15

45.283

(

)

:=

p2

1

19.65

15

45.283

(

)

:=

σx 19.65

cm 15cm

,

45.283

cm

2

,

(

)

10.447

kN

cm

2

=

σx 19.65

cm

15

− cm

,

45.283cm

2

,

(

)

6.068

kN

cm

2

=

p3

9.65

0 0

(

)

:=

σx 9.65

cm 0cm

,

0cm

2

,

(

)

1.075

kN

cm

2

=

p4

20.35 15 104.714

(

)

:=

p4

1

20.35

15

104.714

(

)

:=

σx 20.35cm 15cm

,

104.714cm

2

,

(

)

17.853

kN

cm

2

=

σx 20.35cm

15

− cm

,

104.714

cm

2

,

(

)

13.318

kN

cm

2

=

p5

5.35 15

120.283

(

)

:=

p5

1

5.35

15

120.283

(

)

:=

σx 5.35cm 15cm

,

120.283

cm

2

,

(

)

19.584

kN

cm

2

=

σx 5.35cm

15

− cm

,

120.283cm

2

,

(

)

20.776

kN

cm

2

=

pkt6

5.35 0 0

(

)

:=

σx 5.35cm 0cm

,

0cm

2

,

(

)

0.596

kN

cm

2

=

l

pK

14.65

15 29.717

(

)

:=

σK

σx 14.65

cm 15cm

,

29.717cm

2

,

(

)

:=

σK

2.032

kN

cm

2

=

pL

15.35

15

17.717

(

)

:=

σL

σx 15.35cm

15

− cm

,

17.717

cm

2

,

(

)

:=

σL

0.047

kN

cm

2

=

background image

momenty statyczne Sz (wykres symetryczny względem osi z)

odcinek

punkt

.4-5

4

.4-5

5

.5-6

6

.1-2

1

.1-2

2

.2-3

3

Sz4

0cm

3

:=

Sz5

0.8cm 15

cm 15

cm

180 cm

3

=

:=

Sz56

Sz5

0.8cm 0.5

15

cm 15

cm

+

270 cm

3

=

:=

Sz1

0.7cm 15

cm 10

cm

105 cm

3

=

:=

Sz2

0cm

3

:=

Sz13

Sz1

0.7cm 15

cm 0.5

15

cm

+

183.75 cm

3

=

:=

SzK

0.7cm 15

cm 5

⋅ cm

52.5 cm

3

=

:=

SzL

0.8cm 15

cm 5

⋅ cm

60 cm

3

=

:=

momenty statyczne Sy

odcinek

punkt

.4-5

4

.4-5

5

.5-6

6

.1-2

1

.1-2

2

.2-3

3

.3-6

3

.3-6

.3-6

6

Sy4

0cm

3

:=

Sy5

20.35cm

5.35cm

+

(

) 0.8

cm 0.5

15

cm

154.2 cm

3

=

:=

Sy56

Sy5

0.8cm 5.35

cm 15

cm

+

218.4 cm

3

=

:=

Sy1

0.7

cm

19.65cm

9.65cm

+

(

)

10

cm 0.5

102.55

cm

3

=

:=

Sy2

0cm

3

:=

l

Sy13

Sy1

0.7cm 9.65

cm 15

cm

203.875

cm

3

=

:=

Sy36

2 Sy13

407.75

cm

3

=

:=

Syoś

Sy36

9.65cm 0.5

0.9

cm 9.65

cm

449.655

cm

3

=

:=

spr

Sy6

Syoś

0.9cm 5.35

cm 0.5

5.35

cm

+

436.775

cm

3

=

:=

SyK

0.7

cm 5

⋅ cm 0.5

19.65cm

14.65cm

+

(

)

60.025

cm

3

=

:=

SyL

0.8

cm 5

⋅ cm 0.5

20.35cm

15.35cm

+

(

)

71.4

cm

3

=

:=

momenty statyczne Sω

Sω4

0cm

4

:=

background image

Sω5

0.8cm 0.5

15

cm

ω4

ω5

+

(

)

93.396

cm

4

=

:=

Sω56

Sω5

0.8cm 15

cm 0.5

ω5

+

815.094

cm

4

=

:=

Sω2

0cm

4

:=

Sω1

0.7cm 0.5

10

cm

ω2

ω1

+

(

)

208.019 cm

4

=

:=

Sω13

Sω1

0.5 0.7

cm ω1

15

cm

+

757.783 cm

4

=

:=

SωK

0.7cm 0.5

5

⋅ cm

29.719cm

2

ω2

+

(

)

27.237

cm

4

=

:=

SωL

0.8cm 0.5

5

⋅ cm

ω4

5.183cm

2

+

(

)

219.8 cm

4

=

:=

naprężenia styczne

Mω ten

(

)

148.682 kN cm

=

148.682kN cm

:=

τy5

Tz

Sy5

Jy 0.8

cm

0.641

kN

cm

2

=

:=

τz5

Ty

Sz5

Jz 0.8

cm

0.178

kN

cm

2

=

:=

τy56

Tz

Sy56

Jy 0.8

cm

0.908

kN

cm

2

=

:=

τz56

Ty

Sz56

Jz 0.8

cm

0.268

kN

cm

2

=

:=

τy1

Tz

Sy1

Jy 0.7

cm

0.487

kN

cm

2

=

:=

τz1

Ty

Sz1

Jz 0.7

cm

0.119

kN

cm

2

=

:=

τy13

Tz

Sy13

Jy 0.7

cm

0.969

kN

cm

2

=

:=

τz13

Ty

Sz13

Jz 0.7

cm

0.208

kN

cm

2

=

:=

τy36

Tz

Sy36

Jy 0.9

cm

1.507

kN

cm

2

=

:=

τyoś

Tz

Syoś

Jy 0.9

cm

1.662

kN

cm

2

=

:=

τy6

Tz

Sy6

Jy 0.9

cm

1.614

kN

cm

2

=

:=

τyK

Tz

SyK

Jy 0.7

cm

0.285

kN

cm

2

=

:=

τzK

Ty

SzK

Jz 0.7

cm

0.059

kN

cm

2

=

:=

τyL

Tz

SyL

Jy 0.8

cm

0.297

kN

cm

2

=

:=

τzL

Ty

SzL

Jz 0.8

cm

0.059

kN

cm

2

=

:=

background image

τω5

Sω5

Jω 0.8

cm

0.052

kN

cm

2

=

:=

τω56

Sω56

Jω 0.8

cm

0.454

kN

cm

2

=

:=

τω1

Sω1

Jω 0.7

cm

0.132

kN

cm

2

=

:=

τω13

Sω13

Jω 0.7

cm

0.482

kN

cm

2

=

:=

τωK

SωK

Jω 0.7

cm

0.017

kN

cm

2

=

:=

τωL

SωL

Jω 0.8

cm

0.122

kN

cm

2

=

:=

Lewa strona

Prawa strona

τ5

τy5

τz5

+

τω5

+

0.872

kN

cm

2

=

:=

τ5

τy5

τz5

+

τω5

+

0.411

kN

cm

2

=

:=

τ56

τy56

τz56

+

τω56

+

1.629

kN

cm

2

=

:=

τ56

τy56

τz56

+

τω56

+

0.187

kN

cm

2

=

:=

τ1

τy1

τz1

+

τω1

+

0.501

kN

cm

2

=

:=

τ1

τy1

τz1

+

τω1

+

0.474

kN

cm

2

=

:=

τ13

τy13

τz13

+

τω13

+

1.243

kN

cm

2

=

:=

τ13

τy13

τz13

+

τω13

+

0.695

kN

cm

2

=

:=

τ36

τy36

1.507

kN

cm

2

=

:=

background image

τoś

τyoś

1.662

kN

cm

2

=

:=

τ6

τy6

1.614

kN

cm

2

=

:=

τK

τyK

τzK

+

τωK

+

0.208

kN

cm

2

=

:=

τL

τyL

τzL

+

τωL

+

0.36

kN

cm

2

=

:=

naprężęnia zastępcze

σzK

σK

2

4 τK

2

+

2.074

kN

cm

2

=

:=

σzL

σL

2

4 τL

2

+

0.721

kN

cm

2

=

:=


Wyszukiwarka

Podobne podstrony:
Mathcad Projekt 10 3 xmcd
Mathcad Projekt 10 2 xmcd
Mathcad, Projekt 10 3.xmcd
Mathcad Projekt 10 xmcd(1)
Mathcad Projekt metal
Mathcad projekt
Mathcad Projekt belki kablobetonowej
Pomoc MathCad, Mathcad W2 1 xmcd
Mathcad Projekt wytrzymałość II cz 3
Mathcad projekt fund
Mathcad projekt 13
Mathcad, projekt nr 1c
Mathcad PROJEKT drewno 2
Mathcad projekt 3
(Mathcad Projekt końcowy ppi
Mathcad Projekt mostu sprężanego

więcej podobnych podstron