Podstawy
Podstawy
Kriogeniki
Kriogeniki
wykład 9
wykład 9
24.04.2012
24.04.2012
Maciej Chorowski,
Zakład Automatyki i
Zakład Automatyki i
Kriogeniki
Kriogeniki
Obniżanie temperatury przez
Obniżanie temperatury przez
odparowanie
odparowanie
V
T
r
V
S
dT
dP
Równanie Clausiusa-
Clapeyrona
2
RT
rP
dT
dP
Po pominięciu objętości
cieczy i wyznaczeniu
objętości par z równania
stanu gazu doskonałego
otrzymuje się:
RT
r
e
P
/
Scałkowanie równania
prowadzi do
:
Kriostat do obniżania
Kriostat do obniżania
temperatury przez
temperatury przez
odparowanie
odparowanie
p
Q
o t
1
2
3
4
1 – naczynie
próżniowe, 2 –
naczynie z cieczą
kriogeniczną,
3 –
zawór,
4 – pompa
próżniowa
Próżniowa
olejowa
pompa
łopatkowa
DUO 120,
DUO 250,
UNO 120,
UNO 250.
Obliczenie cieczy, która
Obliczenie cieczy, która
odparuje w trakcie parowania
odparuje w trakcie parowania
T
c
r
M
Q
T
c
M
M
T
c
M
M
c
ot
s
s
c
5
,
0
/
/
0
0
0
ot
s
s
c
dQ
dT
c
M
dT
c
dM
M
rdM
Równanie
uproszczon
e
Bilans
energii
p
r
V
Q
Moc
chłodnicza
kriostatu
C
l
– ciepło właściwe cieczy
C
s
– ciepło właściwe ciała
stałego
Chłodziarka z kriogeniczną
Chłodziarka z kriogeniczną
pompa sorpcyjną
pompa sorpcyjną
q
s k
q
q
d e s
q
a d s
2
1
3
1 – parowacz,
2 – skraplacz,
3 – kriogeniczna
sorpcyjna pompa
próżniowa
Charakterystyka T(p) dla
Charakterystyka T(p) dla
N2
N2
N2 zestalony
W przypadku
azotu
graniczną
temperaturą
towarzyszącą
obniżaniu
ciśnienia jest
temperatura
punktu
potrójnego
tzn. 63,5 K
Kriostat z próbką pod
Kriostat z próbką pod
ciśnieniem otoczenia
ciśnieniem otoczenia
kriostatowany
obiekt
kriogen
pompa
próżniowa
wężownica
zawór
regulacyjny
P
T
ciało stałe
para, gaz
ciecz
P
N
=10
2
kPa
T
N
=77,3 K
Tr
T
1
T
3
T
2
P =1 2,46 kPa
T =63,15 K
Metody uzyskiwania
Metody uzyskiwania
temperatur poniżej 1 K
temperatur poniżej 1 K
Pompowanie par znad helu
Pompowanie par znad helu
Rozcieńczanie 3He w 4He,
Rozcieńczanie 3He w 4He,
chłodziarki rozcieńczalnikowe
chłodziarki rozcieńczalnikowe
Adiabatyczne zestalanie 3He (efekt
Adiabatyczne zestalanie 3He (efekt
Pomerańczuka)
Pomerańczuka)
Rozmagnesowanie adiabatyczne
Rozmagnesowanie adiabatyczne
Wykres fazowy helu
Wykres fazowy helu
1
10
100
1000
10000
1
2
3
4
5
6
7
Temperatura [K]
C
iś
n
ie
n
ie
[
kP
a]
Hel zestalony
Ciecz I
Ciecz II
Sprężony
He II
Nasycony He II
Nasycony He I
Punkt krytyczny
Para
Hel
nadkrytyczny
Dwa izotopy helu: 4He oraz
Dwa izotopy helu: 4He oraz
3He
3He
4He
3He
naturalny hel: 0,00014%
3
He
Dwa izotopy helu: 4He oraz
Dwa izotopy helu: 4He oraz
3He
3He
Charakterystyczne
punkty 4He
T , K
P , MPa
Charakterystyczne
punkty 3 He
T , K
P , MPa
Punkt krytyczny
5,2
0,2275
Punkt krytyczny
3,32
0,1165
Punkt wrzenia pod
ciśnieniem
normalnym
4,2
0,1013
Punkt wrzenia pod
ciśnieniem
normalnym
3,191
0,1013
Punkt dolny
2,172
0,005
Punkt dolny
~ 0,003
Zależność p(T) dla helu
Zależność p(T) dla helu
1 0
1 0
1 0
- 2
- 1
0
1 0
1 0
1 0
1 0
1 0
1
2
3
4
5
0 , 2
0 , 5
1
2
3
4
5
T e m p e r a tu r a , K
P
rę
żn
oś
ć
pa
r,
P
a
H e
3
H e
4
W praktyce
najniższe
temperatury
osiągane przez
obniżenie
ciśnienia par helu
wynoszą
odpowiednio około
0,7 K dla 4He oraz
0,3 K dla 3He.
Temperatury te
odpowiadają
ciśnieniu par
rzędu 0,1 Pa
Dwupłynowy model helu
Dwupłynowy model helu
He
He
II
II
(
(
n
s
n
n
s
s
6
.
5
T
T
n
s- składowa nadciekła , n – składowa normalna
dla T T
= 1
dla T
>T
Dwupłynowy model
Dwupłynowy model
przewodzenia ciepła w
przewodzenia ciepła w
He II
He II
heat sink
heater
T
T + T
n
s
s
n
Ciepło wytwarzane przez grzejnik powoduje przemianę
składowej nadciekłej w normalną. Składowa normalna
przepływa (pełne strzałki) do odbiornika ciepła (heat
sink) Tutaj pozbywa się entropii i ponownie przechodzi
w stan nadciekły, aby następnie połynąć ponownie w
kierunku grzejnika.
Składowa nadciekła 4He
Składowa nadciekła 4He
Nie przenosi ona energii cieplnej (ma zerową entropie), cala
Nie przenosi ona energii cieplnej (ma zerową entropie), cala
energia cieplna jest przenoszona przez skladową normalna
energia cieplna jest przenoszona przez skladową normalna
Nie ma lepkosci, moze przeplywac przez bardzo male otwory
Nie ma lepkosci, moze przeplywac przez bardzo male otwory
Plynie w kierunku zrodla ciepla, cieplo powoduje konwersje
Plynie w kierunku zrodla ciepla, cieplo powoduje konwersje
skladowej nadcieklej helu II w skladowa normalna
skladowej nadcieklej helu II w skladowa normalna
Mieszanina 3He – 4He
Mieszanina 3He – 4He
Chłodziarka
Chłodziarka
rozcienczalnikowa
rozcienczalnikowa
1, 12 – pompa próżniowa,
2 – zbiornik gazu,
3 – skraplacz 3He,
4 – zawór dławiący,
5, 6, 7 – rekuperacyjne
wymienniki ciepła,
8 – komora mieszania,
9 – kriostatowana próbka,
10 – komora parowania,
11 – wanna z helem wrzącym pod
obniżonym ciśnieniem,
13 – naczynie próżniowe,
14, 15 – ekrany radiacyjne
.
Chłodziarka
Chłodziarka
rozcienczalnikowa
rozcienczalnikowa
0 , 0 1
0 , 1
1 0
- 7
1 0
- 6
1 0
- 5
1 0
- 4
M
oc
c
hł
od
ni
cz
a,
W
T e m p e r a tu r a , K
Efekt
Efekt
Pomerańczuka
Pomerańczuka
0 . 8
0
0 . 2
0 . 4
0 . 6
en
tr
op
ia
/
st
ał
a
ga
zo
w
a
S
/R
[-
]
B
A
3 5
3 4
3 3
3 2
3 1
3 0
ci
śn
ie
ni
e
p
[b
ar
]
2 9
1
1 0
1 0 0
1 0 0 0
te m p e r a tu r a T [m K ]
B
A
lin ia to p n ie n ia
3
s ta ły H e
c ie k ły H e
3
3
s ta ły H e
c ie k ły H e
3
s
c
s
c
v
v
s
s
dT
dp
Podstawą możliwości wykorzystania
adiabatycznego zestalania 3He do
uzyskiwania bardzo niskich temperatur jest
osobliwy przebieg krzywej topnienia tego
izotopu helu. Przy temperaturach wyższych
od 0,3 K krzywa topnienia wykazuje typowe
dla „normalnych” substancji nachylenie
dp/dT>0, natomiast poniżej tej temperatury
pochodna dp/dT zmienia znak i ciśnienie
topnienia zaczyna wzrastać wraz z
obniżaniem się temperatury. Minimum
krzywej topnienia występuje przy
temperaturze 0,319 K oraz przy ciśnieniu
2,931 MPa.
W konsekwencji adiabatyczne zestalanie
3He wzdłuż linii topnienia przy coraz to
wyższym ciśnieniu powinno skutkować
obniżeniem temperatury. Na taki sposób
uzyskiwania bardzo niskich temperatur
zwrócił w 1950 roku uwagę rosyjski fizyk
Pomerańczuk, stąd adiabatyczne zestalanie
3He powiązane z obniżaniem temperatury
znane jest jako efekt Pomerańczuka.
Chłodziarka Pomerańczuka
Chłodziarka Pomerańczuka
H e
3
H e
4
1
2
2
3
K o m o r a
m i e s z a n ia
H e
4
P r ó ż n i a
H e
3
m o s te k
p o je m n o ś c i o w y
2 c m
M e ta l
E p o x y
m ie s z k i
B e - C u
P t N M R
te r m o m e tr
1 9 5
B e - C u
p o je m n o ś c io w y
w s k a ź n ik o d k s z ta łc e n i a
Własności helu
Własności helu
nadciekłego
nadciekłego
s
n
6
.
5
T
T
n
n
n
s
s
Termomechaniczne efekty
Termomechaniczne efekty
w He II
w He II
Przewodność cieplna
Przewodność cieplna
He II
He II
3
3
4
3
q
T
s
A
dl
dT
s
n
n
q
T
x
dl
dT
w
c
T
T
n
T
x
dT
L
q
T
T
T
T
n
c
w
T
x
dT
T
x
dT
L
q
w
c
n
T
X
T
X
L
q
(Analogicznie do całek przewodnictwa
cieplnego)
gdzie A – współczynnik
Gorter-Mellink’a
Gradient temperatury w He
II:
l
He II
q
T
w
T
c
L
Całki przewodnictwa cieplnego
Całki przewodnictwa cieplnego
nadciekłego helu
nadciekłego helu
0
100
200
300
400
500
600
1,3
1,5
1,7
1,9
2,1
2,3
T [K]
X
(T
)
±
3
%
T
X(Tc) X(Tw) q
L
q in W.cm
L in cm
T in K
3.4
2
L
Tw
Tc
He II
q
)
(
)
(
w
c
n
T
X
T
X
L
q
n = 3.4
Porównanie przewodności
Porównanie przewodności
cieplnej He II i miedzi
cieplnej He II i miedzi
)
(
)
(
w
c
n
T
X
T
X
L
q
l
He II
q
T
w
T
c
L
Niech Tw = 1,9 K oraz Tc = 1,8 K , L = 1 m
Wtedy X(T
c
) = 350, X(T
w
) = 200
q = 1,1 W/cm
2
- ciepło przewodzone przez He II
W przypadku miedzi
1000 W/mK , dla takiej samej różnicy
temperatur:
q = 0,01 W/cm
2
- ciepło przewodzone przez pręt
miedziany
Przewodnictwo cieplne
Przewodnictwo cieplne
helu
helu
Opór cieplny Kapicy
Opór cieplny Kapicy
W trakcie wymiany ciepła
pomiędzy nadciekłym helem
i ciałem stałym pojawia się
opór cieplny Kapicy
powodujący skokową różnicę
temperatur. Opór Kapicy
wynika z przekazywania
energii od cieczy o
doskonałej przewodności
cieplnej do sieci krystalicznej
ciała stałego i jest odwrotnie
proporcjonalny do
temperatury ciała
podniesionej do trzeciej
potęgi.
SOLID
He II
T
K
T
1
T
4
T
3
T
2
T
5
q
T(x)
Opór cieplny Kapicy
Opór cieplny Kapicy
R
R
K
K
3
/T
K
R
K
q
T
R
K
/
T
R
q
K
1
K
K
R
1
Zgodnie z teorią Khalatnikova:
oraz
3
/
50
...
40
T
R
K
Cu, stal nierdzewna, T<0.3 K,
Opór Kapicy prowadzi do skoków temperatury rzędu 0,05 K
I
I
zentropowa kompresja
zentropowa kompresja
He
He
II
II
p
p
p
s
s
c
Tv
c
T
v
T
dp
dT
p
T
v
v
1
Współczynnik przyjmuje wartości ujemne dla
temperatur poniżej punktu λ. W efekcie izentropowej
kompresji towarzyszy spadek temperatury He II.
Ciśnienie – entalpia nadciekłego helu
Ciśnienie – entalpia nadciekłego helu
He II charakteryzuje dodatni efekt Joule-Thomson’a.
He II ulegając zdławieniu od 100 kPa do 50 kPa
ogrzeje się od 1,8 do 1,9 K.
0,1
1
10
100
1000
0
1
2
3
4
Enthalpy [J /g]
Pressure [kPa]
Saturation
1.7 K 1.8 K 1.9 K
2.0 K
2.1 K
Jak
Jak
kriostatowa
kriostatowa
ć?
ć?
1
10
100
1000
10
000
1
2
3
4
5
6
7
Tem
peratura [K]
C
is
n
ie
n
ie
[
kP
a
]
Cialo stale
Ciecz I
Ciecz II
Sprezony H
e II
N
asycony H
e II
N
asycony H
e I
Punkt krytyczny
Supercritical
Para
Hel
nadkrytyczny
Gazowy hel ma
złe własności
dielektryczne !!!