HIPERBOLA W MODELOWANIU KOSZTU JEDNOSTKOWEGO |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Badano zależność kosztu jednostkowego pewnego wyrobu od skali produkcji. Przedsiębiorstwa pogrupowano wg wielkości produkcji na 11 grup i otrzymano następujące średnie wartości kosztu jednostkowego (w tys. zł) i skali produkcji (w tys. sztuk). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Koszt j |
skala |
Z=1/x |
|
|
|
|
|
|
|
30 |
1 |
1 |
|
|
|
|
|
|
|
26 |
1,25 |
0,8 |
|
|
|
|
|
|
|
20 |
2 |
0,5 |
|
|
|
|
|
|
|
18 |
2,5 |
0,4 |
|
|
|
|
|
|
|
14 |
5 |
0,2 |
|
|
|
|
|
|
|
12 |
10 |
0,1 |
|
|
|
|
|
|
|
12 |
12,5 |
0,08 |
|
|
|
|
|
|
|
11 |
20 |
0,05 |
|
|
|
|
|
|
|
10 |
25 |
0,04 |
|
|
|
|
|
|
|
10 |
50 |
0,02 |
|
|
|
|
|
|
|
11 |
100 |
0,01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Oszacuj KMNK parametry hiperboli wyrażającej zaleźność kosztu jednostkowego od skali produkcji. W tym celu wyznacz odpoweidnią macierz CROSS. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Zinterpretuj uzyskany model. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Oceń dopasowanie modelu do danych empirycznych, interpretując jednocześnie miary dopasowania. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Czy postać nanalityczna modelu jest właściwa? W jaki sposób to stwierdzić? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Jaki model kosztu całkowitego wynika z oszacowanego modelu kosztu jednostkowego? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=20*Z+10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=20/X+10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kj=20/Prod+10 |
|
|
|
|
|
|
|
|
|
|
PC=Kj*Prod |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KC=20+10*Prod |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
Wielokrotność R |
0,998309511623565 |
|
|
|
|
R kwadrat |
0,996621880998081 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,996246534442312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
0,421637021355784 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
472,036363636364 |
472,036363636364 |
2655,20454545455 |
1,96073020618409E-12 |
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
9 |
1,6 |
0,177777777777777 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
10 |
473,636363636364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 99,0% |
Górne 99,0% |
|
|
|
|
|
|
|
|
|
Przecięcie |
10 |
0,170031262026032 |
58,8127140905947 |
5,98429460241023E-13 |
9,61536256349452 |
10,3846374365055 |
9,44742636156504 |
10,552573638435 |
|
|
|
|
|
|
|
|
|
Z=1/x |
20 |
0,388133388905217 |
51,5286769231906 |
1,96073020618408E-12 |
19,1219812759619 |
20,8780187240381 |
18,7386303180376 |
21,2613696819624 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane Koszt j |
Składniki resztowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
30 |
-7,105427357601E-15 |
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
2 |
26 |
-7,105427357601E-15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
20 |
0 |
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
4 |
18 |
0 |
|
|
|
Wielokrotność R |
0,998309511623565 |
|
|
|
|
|
|
|
|
|
|
5 |
14 |
0 |
|
|
|
R kwadrat |
0,996621880998081 |
|
|
|
|
|
|
|
|
|
|
6 |
12 |
1,77635683940025E-15 |
|
|
|
Dopasowany R kwadrat |
0,996246534442312 |
|
|
|
|
|
|
|
|
|
|
7 |
11,6 |
0,400000000000002 |
|
|
|
Błąd standardowy |
0,421637021355784 |
|
|
|
|
|
|
|
|
|
|
8 |
11 |
3,5527136788005E-15 |
|
|
|
Obserwacje |
11 |
|
|
|
|
|
|
|
|
|
|
9 |
10,8 |
-0,799999999999997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
10,4 |
-0,399999999999997 |
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
11 |
10,2 |
0,800000000000004 |
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
472,036363636364 |
472,036363636364 |
2655,20454545455 |
1,96073020618409E-12 |
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
9 |
1,6 |
0,177777777777777 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
10 |
473,636363636364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
|
Przecięcie |
10 |
0,170031262026032 |
58,8127140905947 |
5,98429460241023E-13 |
9,61536256349452 |
10,3846374365055 |
9,61536256349452 |
10,3846374365055 |
|
|
|
|
|
|
|
|
|
Z=1/x |
20 |
0,388133388905217 |
51,5286769231906 |
1,96073020618408E-12 |
19,1219812759619 |
20,8780187240381 |
19,1219812759619 |
20,8780187240381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane Koszt j |
Składniki resztowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
30 |
-7,105427357601E-15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
26 |
-7,105427357601E-15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
20 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
18 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
14 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
12 |
1,77635683940025E-15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
11,6 |
0,400000000000002 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
11 |
3,5527136788005E-15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
10,8 |
-0,799999999999997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
10,4 |
-0,399999999999997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
10,2 |
0,800000000000004 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HIPERBOLA - przykład MODELU NIELINIOWEGO, LINIOWEGO WZGL. PARAMETRÓW |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pewna prywatna, jedno-oddziałowa szkoła języków obcych rozpoczęła działalność w 1995 roku. Wtedy to, aby pozyskać uczniów na pierwszy rok, przeprowadziła intensywną kampanię reklamową, wydając na nią 20 tys. zł. |
|
|
|
W poniższej tabeli zestawiono informację na temat wydatków na reklamę (X, w tys. zł) oraz liczby osób, które zapisywały się na pierwszy rok (Y, w dziesiątkach osób) w okresie 1997-2006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rok |
Y |
X |
|
|
1997 |
36,2 |
20 |
|
|
1998 |
34 |
10 |
|
|
1999 |
16 |
2,5 |
|
|
2000 |
25 |
4 |
|
|
2001 |
28 |
5 |
|
|
2002 |
10 |
2 |
|
|
2003 |
15,6 |
2,5 |
|
|
2004 |
25 |
4 |
|
|
2005 |
28,8 |
5 |
|
|
2006 |
34,4 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Uzsadnij dlaczego hiperbola może być odpowiednią postacią analityczną modelu, wyrażającego zależność liczby studentów od wydatków na reklamę. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Jaką konstrukcję miałaby macierz CROSS, niezbędna do oszacowania parametrów modelu hiperbolicznego. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Oszacuj parametry modelu hiperbolicznego i je zinetrpretuj. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Oceń dopasowanie modelu do danych empirycznych. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Czy wydatki na reklamę są zmienna istotną? Uzasadnij. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. Wyznacz prognozę liczby uczniów, którzy w 2012 roku zgłoszą się na pierwszy rok nauki, wiedząc, że akcja promocyjna kosztować będzie 8 tys. zł. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HIPERBOLA - przykład MODELU NIELINIOWEGO, LINIOWEGO WZGL. PARAMETRÓW |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Badano kwartalne przychody pewnego funduszu emerytalnego (wyrażone w mln zł)w ciągu kolejnych kwartałów 2007-2009. |
|
|
|
|
|
|
|
|
|
|
|
Na podstawie zebranych informacji zauważono, ze rosły one coraz wolniej w ciągu roku. Według badań specjalistów przychody te nie powinny przekroczyć pewnego granicznego poziomu. Stąd kształtowanie się przychodów tego funduszu emerytalnego postanowiono opisać trendem hiperbolicznym |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
t |
Z |
|
Y=Beta1*(1/t)+Beta2+E |
|
|
|
|
|
|
|
|
|
|
|
|
|
2007 |
I |
341 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
II |
946 |
2 |
0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
III |
1086 |
3 |
0,333333333333333 |
|
|
|
|
|
|
IV |
1163 |
4 |
0,25 |
|
|
|
|
2008 |
I |
1237 |
5 |
0,2 |
|
|
|
|
|
II |
1245 |
6 |
0,166666666666667 |
|
|
|
|
|
III |
1322 |
7 |
0,142857142857143 |
|
|
|
|
|
IV |
1331 |
8 |
0,125 |
|
|
|
|
2009 |
I |
1360 |
9 |
0,111111111111111 |
|
|
|
|
|
II |
1424 |
10 |
0,1 |
|
|
|
|
|
III |
1404 |
11 |
0,090909090909091 |
|
|
|
|
|
IV |
1397 |
12 |
0,083333333333333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Oszacuj parametry tego modelu, wykorzystując gotowe narzędzia Excela, jak również analitycznie, wyznaczając odpowiednią macierz CROSS |
|
|
2. Jdokonaj interpretacji oszacowanego trendu |
|
|
|
|
|
|
|
|
2. Czy trend jest dobrze dopasowany do danych empirycznych? |
|
|
|
|
|
R^2 |
|
|
3. Czy postać analityczna tego trendu jest słuszna? |
|
|
|
|
|
|
|
|
4. Czy składniki losowe nie są skorelowane? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Wyznacz prognozę przychodów funduszu w III kwartale 2011 roku. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,995498180870436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,991016628116348 |
bardzo dobrze dopasowany |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,990118290927983 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
30,0721248128625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
997630,673092396 |
997630,673092396 |
1103,16776478971 |
1,44520498716651E-11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
10 |
9043,3269076038 |
904,33269076038 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
11 |
1006674 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 99,0% |
Górne 99,0% |
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
1483,80101468684 |
12,4369007737212 |
119,306332154878 |
4,19824425179001E-17 |
1456,08987299352 |
1511,51215638017 |
1444,38508494517 |
1523,21694442851 |
|
|
|
|
|
|
|
|
|
|
|
Z |
-1143,85149586068 |
34,4388676136522 |
-33,2139694223638 |
1,44520498716651E-11 |
-1220,58607447982 |
-1067,11691724154 |
-1252,99765782979 |
-1034,70533389156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=1144*Z+1483,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
Y=1144/t+1483,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane Y |
Składniki resztowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
339,949518826164 |
1,05048117383603 |
|
|
|
|
|
|
|
|
wyraz wolny (granica do której dąży Y)= 1483,8 |
|
|
|
|
|
|
|
|
2 |
911,875266756504 |
34,1247332434965 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
1102,51718273328 |
-16,5171827332833 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1197,83814072167 |
-34,8381407216732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
1255,03071551471 |
-18,0307155147073 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
1293,15909871006 |
-48,1590987100631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
1320,39365813532 |
1,60634186468246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
1340,81957770426 |
-9,81957770425811 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
1356,70640403566 |
3,29359596434347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
1369,41586510078 |
54,5841348992249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
1379,81451506315 |
24,1854849368551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
1388,48005669845 |
8,51994330154685 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
oszacowalusmy ze kwartalne przychody tego funduszu wzrastają ale robia to coraz wolniej dążąc do granizcznegho poziomu 1483,8 mln zl |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,995498180870436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,991016628116348 |
|
|
|
|
|
|
Y=-1143,8515*Z+1483,80101 |
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,990118290927983 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
30,0721248128625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
997630,673092396 |
997630,673092396 |
1103,16776478971 |
1,44520498716651E-11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
10 |
9043,3269076038 |
904,33269076038 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
11 |
1006674 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
1483,80101468684 |
12,4369007737212 |
119,306332154878 |
4,19824425179001E-17 |
1456,08987299352 |
1511,51215638017 |
1456,08987299352 |
1511,51215638017 |
|
|
|
|
|
|
|
|
|
|
|
Z |
-1143,85149586068 |
34,4388676136522 |
-33,2139694223638 |
1,44520498716651E-11 |
-1220,58607447982 |
-1067,11691724154 |
-1220,58607447982 |
-1067,11691724154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane Y |
Składniki resztowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
339,949518826164 |
1,05048117383603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
911,875266756504 |
34,1247332434965 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
1102,51718273328 |
-16,5171827332833 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1197,83814072167 |
-34,8381407216732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
1255,03071551471 |
-18,0307155147073 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
1293,15909871006 |
-48,1590987100631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
1320,39365813532 |
1,60634186468246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
1340,81957770426 |
-9,81957770425811 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
1356,70640403566 |
3,29359596434347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
1369,41586510078 |
54,5841348992249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
1379,81451506315 |
24,1854849368551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
1388,48005669845 |
8,51994330154685 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ĆWICZENIE - PARABOLA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Postanowiono zbadać zależność między wynikiem finansowym pewnej szkoły prywatnej (Y, w tys. zł) a średniomiesięcznymi wydatkami na reklamę (X, w tys. zł) Przyjęto hipotezę, że zależność jest paraboliczna: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
objasniana |
objasniajace |
|
|
|
|
|
|
|
|
|
|
Dane empiryczne: |
WF (tys. zł) |
Wydatki na reklamę (tys. zł) |
|
|
|
|
|
Modelowe |
|
|
|
|
y |
x |
Z=x^2 |
|
|
|
|
|
|
|
|
|
4,1 |
20 |
400 |
|
|
|
|
0 |
|
|
|
|
96,7 |
10 |
100 |
|
|
|
|
90 |
|
|
|
|
-66,9 |
23 |
529 |
|
|
|
|
-66 |
|
|
|
|
48,8 |
4 |
16 |
|
|
|
|
48 |
|
|
|
|
56,9 |
5 |
25 |
|
|
|
|
60 |
|
|
|
|
21,6 |
2 |
4 |
|
|
|
|
18 |
|
|
|
|
23,9 |
2,5 |
6,25 |
|
|
|
|
26,25 |
|
|
|
|
44,5 |
4 |
16 |
|
|
|
|
48 |
|
|
|
|
71 |
14 |
196 |
|
|
|
|
78 |
|
|
|
|
89,9 |
10 |
100 |
|
|
|
|
90 |
|
|
|
|
89,9 |
9 |
81 |
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Jaką konstrukcję mialaby macierz CROSS? |
|
|
|
|
|
|
|
|
|
|
|
2. Oszacuj parametry modelu parabolicznego. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Przyjmij zaokrąglenia parametrów (do liczb calkowitych) i wykonaj niezbedne obliczenia w celu ustalenia: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) jaki jest optymalny poziom wydatków na reklamę i jaki jest maksymalny wynik fianansowy (zgodnie z modelem) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) przy jakim poziomie wydatków na reklamę wynik finansowy jest dodatni. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. W jaki sposób można by zweryfikować, że parabola jest właściwą postacia analityczna modelu? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a |
-1 |
|
|
|
|
|
|
|
delta |
361 |
|
miejsca zerowe |
|
|
|
|
|
|
b |
21 |
|
|
|
|
|
|
pierwias |
19 |
|
20 |
|
|
|
|
|
|
ce |
-20 |
|
|
|
|
^Y=21X-1(X^2)-20 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
Y=aX^2+bX+c |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,99657441821001 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,993160571030621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,991450713788276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
4,40581127565717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
2 |
22549,7324342082 |
11274,8662171041 |
580,844146771362 |
2,18816150889877E-09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
8 |
155,289383973663 |
19,4111729967078 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
10 |
22705,0218181818 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a,b,c |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 99,0% |
Górne 99,0% |
|
|
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
-20,459998778688 |
3,83632689452213 |
-5,33322611477732 |
0,000699809437 |
-29,3065844541426 |
-11,6134131032334 |
-33,3323614386595 |
-7,58763611871659 |
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
21,0650894842129 |
0,822858972462428 |
25,5998782162818 |
5,81223370998335E-09 |
19,1675732925923 |
22,9626056758335 |
18,3040789127018 |
23,826100055724 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Z=x^2 |
-1,00103633127471 |
0,033097014888349 |
-30,2455171456299 |
1,54994269187806E-09 |
-1,07735818440711 |
-0,924714478142317 |
-1,11208963572946 |
-0,889983026819965 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane y |
Składniki resztowe |
|
|
Wielokrotność R |
0,99657441821001 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0,427258395685783 |
3,67274160431422 |
|
|
R kwadrat |
0,993160571030621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
90,08726293597 |
6,61273706403003 |
|
|
Dopasowany R kwadrat |
0,991450713788276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
-65,5111598861132 |
-1,3888401138868 |
|
|
Błąd standardowy |
4,40581127565717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
47,7837778577682 |
1,01622214223175 |
|
|
Obserwacje |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
59,8395403605088 |
-2,93954036050875 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
17,666034864639 |
3,93396513536105 |
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
25,9462478613773 |
-2,0462478613773 |
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
8 |
47,7837778577682 |
-3,28377785776824 |
|
|
Regresja |
2 |
22549,7324342082 |
11274,8662171041 |
580,844146771362 |
2,18816150889878E-09 |
|
|
|
|
|
|
|
|
|
|
|
9 |
78,2481330704494 |
-7,2481330704494 |
|
|
Resztkowy |
8 |
155,289383973663 |
19,4111729967078 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
90,08726293597 |
-0,187262935969969 |
|
|
Razem |
10 |
22705,0218181818 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
88,0418637459766 |
1,85813625402344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
jaki to model? |
|
parabola |
|
|
|
Przecięcie |
-20,459998778688 |
3,83632689452213 |
-5,33322611477732 |
0,000699809437 |
-29,3065844541426 |
-11,6134131032334 |
-29,3065844541426 |
-11,6134131032334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
21,0650894842129 |
0,822858972462428 |
25,5998782162818 |
5,81223370998335E-09 |
19,1675732925923 |
22,9626056758335 |
19,1675732925923 |
22,9626056758335 |
|
|
|
|
|
|
|
w paraboli się nie interpertuje niczego |
|
|
|
|
|
Z=x^2 |
-1,00103633127471 |
0,033097014888349 |
-30,2455171456299 |
1,54994269187806E-09 |
-1,07735818440711 |
-0,924714478142317 |
-1,07735818440711 |
-0,924714478142317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ramiona w dół bo -x^2+21x-20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SKŁADNIKI RESZTOWE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
Przewidywane y |
Składniki resztowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0,427258395685783 |
3,67274160431422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
90,08726293597 |
6,61273706403003 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
-65,5111598861132 |
-1,3888401138868 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
47,7837778577682 |
1,01622214223175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
59,8395403605088 |
-2,93954036050875 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
17,666034864639 |
3,93396513536105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
25,9462478613773 |
-2,0462478613773 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
47,7837778577682 |
-3,28377785776824 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
78,2481330704494 |
-7,2481330704494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
90,08726293597 |
-0,187262935969969 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
88,0418637459766 |
1,85813625402344 |
|
|
|
|
|
|
|
|
|
|
|
|
CASE STUDY - RAINFALL PROBLEM |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The following sample data have been obtained by an Agragroup staff agronomist who is working to develop new grain hybrids. |
|
Poniższe dane zostały zebrane przez członków badawczej grupy Agragroup, zajmującej się nową odmianą pewnego zboża. |
|
|
1. Plot the scatter diagram for the data (done :-)) |
|
|
|
|
|
|
|
1. Przedstaw zależność wielkości plonu (Y, w buszelach z akra) od wielkości opadów (X, w calach/m kwadr) na wykresie (zrobione :-). |
|
|
2. Run the regression analysis to determine the equation coefficients for parabola. |
|
|
|
|
|
|
|
|
|
3. Does the curve shape provide an appropriate explanation of the underlying relationship? |
|
2. Znajdź oceny parametrów paraboli opisującej badaną zależność. Czy parabola jest dobrze dopasowana do danych empirycznych |
|
|
4. Sketch the shape of the regression curve on your scatter diagram. |
|
|
|
|
|
|
|
3. Czy hipoteza dotycząca postaci analitycznej jest słuszna? |
|
|
|
|
|
|
|
|
5. What are the final conclusions based on te obtained model equatin. When does the yield reach the peak? |
|
4. Jakie powinny być opady aby plon był jak największy? |
|
|
|
|
|
|
|
|
bushel=36.4 litra |
|
|
|
|
|
|
|
5. Przy jakiej wielkości opadów należy oczekiwać, że plon będzie równy zero? |
|
|
|
|
|
|
|
|
6. What rainfall conditons probably cause that the grain yields zero bushels. |
|
|
|
|
|
|
|
6. Nanieś na wykres wartości modelowe zmiennej. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienne pomocnicze |
|
|
|
|
|
|
|
|
|
|
|
|
|
Yield (bushels per acre) Y |
Rainfall (inches) X |
Z1=X |
Z2=Xkwadr |
|
|
|
Wartości modelowe |
|
|
|
|
|
|
|
|
|
25 |
37 |
37 |
1369 |
|
a |
0 |
0 |
|
|
|
|
|
|
|
|
|
48 |
11 |
11 |
121 |
|
b |
0 |
0 |
|
|
|
|
|
|
|
|
|
123 |
16 |
16 |
256 |
|
c |
0 |
0 |
|
|
|
|
|
|
|
|
|
58 |
36 |
36 |
1296 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
107 |
15 |
15 |
225 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
119 |
21 |
21 |
441 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
63 |
33 |
33 |
1089 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
91 |
12 |
12 |
144 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
140 |
22 |
22 |
484 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
98 |
29 |
29 |
841 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
126 |
23 |
23 |
529 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|