tablica transformat laplace

background image

Tablica przekształceń Laplace’a

Lp. F(s)

f(t)

1

1

( )

t

δ

- funkcja impulsowa

2

s

a

a

3

2

1

s

t

4

n

s

1

(

)

!

1

1

n

t

n

dla n=1,2,3,...

5

a

s

+

1

at

e

6

τ

+ s

1

1

τ

τ

t

e

1

7

(

)

a

s

s

+

1

(

)

at

a

− e

1

1

8

(

)

τ

+ s

s 1

1

τ

t

e

1

9

(

)

a

s

s

+

2

1

(

)

1

e

1

2

+

at

a

at

10

(

)

2

1

a

s

+

at

t

e

11

(

)

2

a

s

s

+

(

)

at

at

e

1

12

(

)

2

1

a

s

s

+

(

)

(

)

at

at

a

+

e

1

1

1

2

13

(

)(

)

b

s

a

s

+

+

1

b

a

a

b

bt

at

,

e

e

14

(

)(

)

b

s

a

s

s

+

+

b

a

b

a

b

a

bt

at

,

e

e

15

(

)(

)

b

s

a

s

s

+

+

1

b

a

b

a

b

a

ab

bt

at



+

,

e

e

1

1

16

2

2

2

1

n

s

s

ω

+

α

+

α

>

ω

α

ω

=

ω

ω

ω

n

n

o

o

o

at

t

e

,

,

sin

2

2

17

2

2

2

n

s

s

s

ω

+

α

+

(

)

α

>

ω

α

ω

=

Θ

α

ω

=

ω

Θ

ω

ω

ω

n

o

n

o

o

at

o

n

t

,

tg

,

,

sin

e

2

2

18

(

)

2

2

2

1

n

s

s

s

ω

+

α

+

(

)

α

>

ω

α

ω

=

Θ

α

ω

=

ω





Θ

+

ω

ω

ω

ω

n

o

n

o

o

at

o

n

n

t

,

tg

,

,

sin

e

1

1

2

2

2

19

2

2

1

a

s

+

at

a

sin

1

20

2

2

a

s

s

+

at

cos

21

(

)

2

2

1

a

s

s

+

(

)

at

a

cos

1

1

2

22

(

)

2

2

2

1

a

s

s

+

3

2

sin

a

at

a

t

23

2

2

sin

cos

b

s

b

s

+

ϕ

ϕ

(

)

ϕ

+

bt

cos

24

2

2

cos

sin

b

s

b

s

+

ϕ

+

ϕ

(

)

ϕ

+

bt

sin

25

2

2

1

a

s

at

a

sinh

1

background image

26

2

2

a

s

s

at

cosh

27

(

)

2

2

1

a

s

s

(

)

1

cosh

1

2

at

a

28

(

)

2

2

2

1

a

s

s

2

3

sinh

a

t

a

at

29

(

)

2

2

1

b

a

s

+

+

b

bt

at

sin

e

30

(

)

2

2

b

a

s

s

+

+

at

bt

b

a

bt

e

sin

cos

31

(

)

2

2

b

a

s

a

s

+

+

+

bt

at

cos

e

32

(

)

(

)

2

2

sin

cos

b

a

s

b

a

s

+

+

ϕ

ϕ

+

(

)

ϕ

+

bt

at

cos

e

33

(

)

(

)

2

2

cos

sin

b

a

s

b

a

s

+

+

ϕ

+

ϕ

+

(

)

ϕ

+

bt

at

sin

e

34

(

)

2

2

1

b

a

s

+

b

bt

at

sinh

e

35

(

)

2

2

b

a

s

a

s

+

+

bt

at

cosh

e

36

(

)

3

1

a

s

+

at

t

e

2

1

2

37

(

)

3

a

s

s

+

at

at

t

 −

e

2

1

1

38

(

)

(

)

2

2

1

b

s

a

s

+

+

(

)

[

]

2

2

2

2

arcsin

,

sin

sin

e

1

b

a

b

bt

b

a

b

at

+

=

Θ

Θ

+

Θ

+

39

(

)

(

)

2

2

1

b

s

a

s

+

2

2

e

sinh

cosh

a

b

bt

b

a

bt

at

40

(

)(

)

2

1

b

s

a

s

+

+

(

)

[

]

(

)

2

e

1

e

b

a

t

b

a

bt

at

41

(

)(

)

2

b

s

a

s

s

+

+

(

)

[

]

(

)

2

e

e

b

a

a

t

b

a

b

a

at

bt

42

(

)

2

2

2

1

a

s

+

2

3

2

cos

2

sin

a

at

t

a

at

43

(

)

2

2

2

a

s

s

+

at

t

a

sin

2

1

44

(

)

2

2

2

2

a

s

s

+

(

)

at

at

at

a

cos

sin

2

1

+

45

(

)

2

2

2

2

2

a

s

a

s

+

at

t cos

46

(

)

2

2

2

1

a

s

3

2

2

sinh

2

cosh

a

at

a

at

t

47

(

)

2

2

2

a

s

s

at

t

a

sinh

2

1

48

(

)

n

a

s

+

1

(

)

,..

3

,

2

,

1

,

!

1

e

1

=

n

n

t

at

n


Wyszukiwarka

Podobne podstrony:
Obliczanie transformat Laplace'a
Transformaty Laplacka
Transformata Laplacea oryginaly i transformaty funkcji [tryb zgodności]
AM23 w13 Transformata Laplace'a
Transformaty Laplace a
Transformacja Laplace wyprowadzenie wzorów
9 transformata Laplace'a + Transmitancja Operatorowa
Transformacja Laplacea
cps tablica transformat, Edukacja, studia, Semestr IV, Podstawy i Algorytmy Przetwarzania Sygnałów
AM23 w14 Zastosowania transformaty Laplace'a
transformaty Laplace'a
Podstawowe regu y transformacji Laplace's (wzory)
transformata Laplaca
Transformata Laplace, Studia, Semestr 1, Sygnały i Systemy, Sprawozdanie 4
3 Cwiczenia zadania4 transformata Laplacea id 606491 (2)
3 Podstawy automatyki Transformata Laplacea, algebra blok
Podstawowe transformaty Laplace'a
!Tablice transformaty Z i jej wlasnoci
Egz systemy ściaga, Transformaty Laplace`a [f(t) ; F(t)]

więcej podobnych podstron