DANE OGÓLNE DO PROJEKTU:
Stpoa fundamentowa dla stalowej ramy- elementu nośnego hali jednonawowej w obiekcie niepodpiwniczonym
Lokalizacja : Żary
Strefa klimatyczna: II =>
hz
0.8 m
⋅
:=
Rozpiętość hali:
LH
21m
:=
Obciążenie pionowe:
Pr
1700 kN
⋅
:=
Moment :
Mr
300 kN
⋅
m
⋅
:=
Warstwa gruntu na k tórej posadawiam fundament(Pias ek gliniasty(B )) jest gruntem wątpliwym.Zakładam że jes t to grunt
wysadzinowy więc głębokość posadowienia D fundamentu musi D>0.5 m. Poziom posadzki jest równy z poziomem terenu.
A
B
IL
ID
ρ
φ
c
M0
M
ZWU
ZWG
m
m
t/m3
?
kPa
Mpa
Mpa
m
m
Pg(B)
2,5
1,7
0,15
2,15
20,00 35,00 42,00 56,00
0,75
Ps
3,4
3,1
0,30
1,80
31,00
68,00 75,56
0,9
Gp(B)
1,7
3,1
0,05
2,20
22,00 40,00 64,00 85,33
0,75
Ż
0,40
1,90
37,00
135,00 135,00
1
z badań
z normy
z badań
rodzaj
gruntu
β
Do obliczeń w programie przyjęto jednostki:
t
1000 kg
⋅
:=
Warstwy gruntu:
- warstwa I (piasek gliniasty P
g
(B))
IL
0.15
:=
ρI
2.15
t
m
3
:=
ϕI
20 deg
⋅
:=
cI
35 kPa
⋅
:=
cur
0.9 cI
⋅
31.5 kPa
⋅
=
:=
M0I
42 MPa
⋅
:=
MI
56MPa
:=
- warstwa II (piasek średni P
s
)
IDII
0.30
:=
ρII
1.8
t
m
3
:=
ϕII
31 deg
⋅
:=
M0II
68 MPa
⋅
:=
MII
75.5MPa
:=
-warstwa III(Glina piaszczysta G
p
(B))
cIII
40kPa
:=
ρIII
2.20
t
m
3
:=
ϕIII
22 deg
⋅
:=
M0III
64 MPa
⋅
:=
MIII
85.33MPa
(
)
:=
-warstwa IV (Żwir Ż)
ρIV
1.90
t
m
3
:=
ϕIV
37.deg
:=
MIV
135 MPa
⋅
:=
M0IV
135 MPa
⋅
:=
γm
0.9
:=
Przyjęto współczynnik materiałowy
DANE POMOCNICZE:
g
10
m
s
2
⋅
:=
*przyspieszenie ziemskie :
*gęstość wody :
ρw
1.0
t
m
3
⋅
:=
*gęstość betonu zbrojonego :
γB
25.0
kN
m
3
⋅
:=
- minimalna głębokość posadowienia :
Dmin
0.8 m
⋅
:=
2. OBLICZENIA WSTĘPNE:
2.1 Ustalenie wymiarów fundamentu:
- warstwa I(piasek średni):
kąt tarcia wewnętrznego:
ϕI 20 deg
⋅
=
ϕI
r
( )
ϕ'I
=
ϕ'I
ϕI 0.9
⋅
:=
ϕ'I 18 deg
⋅
=
średnia obl. gęstość objętościowa gruntu zalegająca poniżej poziomu posadowienia do głębokości B:
ρBI
r
( )
ρrBI
:=
ρBI
r
( )
ρrBI
ρI γm
⋅
1.935
t
m
3
⋅
=
:=
średnia obl. gęstość objętościowa gruntu zalegająca powyżej podstawy fundamentu:
ρDI
r
( )
ρrDI
=
ρrDI
ρI γm
⋅
:=
ρrDI 1.935
t
m
3
⋅
=
współczyniki nośności wyznaczone na podstawie obliczeniowej wartości kąta tarcia wewnętrznego:
NDI
5.26
:=
NBI
1.04
:=
NCI
13.10
:=
składowa pionowa wypadkowej obciążenia całkowitego:
Nr
1.1 Pr
⋅
1870 kN
⋅
=
:=
Grunt zalegający bezpośrednio pod fundamentem(piasek gliniasty(B)):
Obliczenie wymiarów podstawy fundamentu.
Przyjmuje do obliczeń wymiary podstawy fundamentu:
Bob
1m
:=
-szerokość:
cur
31.5 kPa
⋅
:=
-długość:
Lob
1m
:=
- minimalna głębokość posadowienia :
Dmin 0.8 m
=
qf
1
0.3
Bob
Lob
⋅
+
NCI
⋅
cur
⋅
1
1.5
Bob
Lob
⋅
+
NDI
⋅
Dmin
⋅
ρrDI
⋅
g
⋅
+
1
0.25
Bob
Lob
⋅
−
NBI
⋅
Bob
⋅
ρrBI
⋅
g
⋅
+
755.1 kPa
⋅
=
:=
m
0.81
:=
BxL
Nr
m qf
⋅
≥
Nr
m qf
⋅
3.057 m
2
=
BxL
3.075 m
2
⋅
≥
B
0.7 0.9
,
(
) L
⋅
:=
0.7
Przyjmuje wymiar podstawy fundamentu:
L
2.2 m
⋅
:=
B
0.8 L
⋅
1.76 m
⋅
=
:=
Ast
L B
⋅
3.872 m
2
⋅
=
:=
Obliczenie wysokości stopy:
Przyjmuje długość słupa mierzoną odpowiednio w kierunku B i L:
Stopa betonowa
asB
0.5m
:=
asL
0.5m
:=
hst 0.75 L asL
−
(
)
⋅
≥
Stopa żelbetowa
0.75 L
asL
−
(
)
⋅
1.033
=
0.3 L
asL
−
(
)
⋅
0.413
=
0.5 L
asL
−
(
)
⋅
0.689
=
0.413 m
hst
≤
0.689 m
≤
Ostatecznie przyjęto stopę ostrosłupową o wymiarach:
L
2.2 m
⋅
:=
B
1.8 m
⋅
:=
hst
0.8 m
⋅
:=
1. Sprawdzenie stanu granicznego nośności w poziomie posadowienia fundamentu:
Nr m QfNB
⋅
≤
Nr m QfNL
⋅
≤
1.1 Zestawienie obciążeń:
γf
1.1
:=
współczynnik obciążenia stopy
w
0.2 m
⋅
:=
aL
asL w
+
0.7 m
⋅
=
:=
aB
asB w
+
0.7 m
⋅
=
:=
F1
B L
⋅
3.96 m
2
⋅
=
:=
F2
aL aB
⋅
0.49 m
2
⋅
=
:=
γB
25
kN
m
3
⋅
:=
Objętość stopy fundamentowej:
Vf
B L
⋅ w
⋅
hst w
−
3
F1
F1 F2
⋅
+
F2
+
(
)
⋅
+
1.961 m
3
⋅
=
:=
Ciężar własny stopy:
Gst
γf Vf
⋅
γB
⋅
53.916 kN
⋅
=
:=
Ciężar własny gruntu i posadzki:
Dmin 0.8 m
=
- objętość gruntu:
Vg
B L
⋅ D
min
⋅
Vf
−
:=
Vf
Vg
2.2 1.8
⋅
0.8
⋅
1.961
−
1.207
=
:=
Vg
1.207 m
3
⋅
:=
γfg
1.3
:=
współczynnik obciążenia dla gruntu i posadzki
γgr
ρI g
⋅
:=
γgr
21.5
kN
m
3
⋅
:=
Ggp
γfg Vg
⋅
γgr
⋅
33.736 kN
⋅
=
:=
Obliczeniowa wartość pionowej składowej obciążenia :
Pr 1700 kN
⋅
=
Gst 53.916 kN
⋅
=
Nr
Pr Gst
+
Ggp
+
1787.652 kN
⋅
=
:=
Obliczenie mimośrodów:
Mr
300 kN
⋅
m
⋅
:=
es
Mr
Pr
0.176 m
⋅
=
:=
<
B
6
0.243
=
Przyjęto mimośród początkowy e
s
0.18 m
⋅
:=
Obliczeniowy mimośród wypadkowej obciążenia całkowitego :
eL
Mr Pr es
⋅
−
Nr
0.003
−
=
:=
eL
0.003
−
=
<
L
6
0.297
=
Przyjęto mimośrody :
eL
0.0
:=
eB
0
:=
1.2 Obliczenie oporu granicznego podłoża:
Obliczenie gęstości objętościowej szkieletu gruntowego i porowatości dla poszczególnych warstw:
1. Piasek gliniasty (B)-( I warstwa)
- spójność obliczeniowa :
cu
r
( )
cur
=
cur 31.5 kPa
⋅
=
cruI
γm cI
⋅
:=
cruI 31.5 kPa
⋅
=
t
1000 kg
⋅
:=
- gęstość obliczeniowa :
ρDrI
ρI γm
⋅
:=
ρBI
r
( )
ρBrI
=
ρD1
r
( )
ρDrI
=
ρDrI 1935
kg
m
3
=
ρBr1
ρDrI 1935
kg
m
3
=
:=
ρI
2.15
t
m
3
⋅
:=
ρBr1
1.935
t
m
3
⋅
:=
- kąt obliczeniowy :
ϕI 20 deg
⋅
=
ϕI
r
( )
ϕrI
=
ϕrI
ϕI γm
⋅
18 deg
⋅
=
:=
tan
ϕI
r
( )
tan
ϕrI
( )
=
tan
ϕrI
( )
0.325
=
- współczynniki :
NDI 5.26
=
NCI 13.1
=
NBI 1.04
=
-gęstość gruntu pod wodą:
ρsI
2.15
t
m
3
:=
wnI
0.13
:=
ρsI
2.65
t
m
3
⋅
:=
ρdI
ρI
1
wnI
+
1.903
t
m
3
⋅
=
:=
porowatość:
nI
ρsI ρdI
−
ρsI
0.282
=
:=
2. piasek średni ( II warstwa ) :
ρsII
2.65
t
m
3
:=
- gęstość obliczeniowa :
ρII
1.8
t
m
3
⋅
:=
ρDII
r
( )
ρDrII
=
ρDrII
ρII γm
⋅
:=
ρBII
r
( )
ρBrII
=
ρBrII
ρDrII 1.62
t
m
3
⋅
=
:=
ρDrII 1.62
t
m
3
⋅
=
wnII
0.16
:=
ρdII
ρII
1
wnII
+
1.552
t
m
3
⋅
=
:=
porowatość:
nII
ρsII ρdII
−
ρsII
0.414
=
:=
- kąt obliczeniowy :
ϕII 31 deg
⋅
=
ϕrII
ϕII γm
⋅
27.9 deg
⋅
=
:=
ϕII
r
( )
ϕrII
=
tan
ϕII
r
( )
⋅
tan
ϕrII
⋅
=
tan
ϕrII
( )
0.529
=
- współczynniki :
NDII
20.63
:=
NCII
32.67
:=
NBII
8.85
:=
3. glina piaszczysta (B) - III warstwa
wnIII
0.12
:=
ρsIII
2.67
t
m
3
:=
ρIII
2.20
t
m
3
:=
ρdIII
ρIII
1
wnII
+
1.897
t
m
3
⋅
=
:=
porowatość:
nIII
ρsIII ρdIII
−
ρsIII
0.29
=
:=
STOPA FUNDAMENTOWA A
TrL
0
:=
TrB
0
:=
tgα.L
TrL
Nr
0
=
:=
tgα.B
TrB
Nr
0
=
:=
tan
ϕrI
( )
0.325
=
tgα.L
tan
ϕrI
( )
0
=
ϕI
r
( )
ϕ'I
=
ϕ'I
ϕI 0.9
⋅
:=
ϕ'I 18 deg
⋅
=
tan
ϕ'I
( )
0.325
=
tgα.B
tan
ϕ'I
( )
0
=
iD
1
:=
iB
1
:=
iC
1
:=
dla kierunku B
Współczynniki uwzględniające wychylenie
wypadkowej obciążenia całkowitego:
iDL
1
:=
iBL
1
:=
iCL
1
:=
dla kierunku L
Wymiary zredukowane fundamentu:
B'
B
2 eB
⋅
−
1.8 m
⋅
=
:=
B'
L'
≤
L'
L
2 eL
⋅
−
2.2 m
⋅
=
:=
ρw
1
t
m
3
⋅
:=
ρD
ρrDI 1935
kg
m
3
=
:=
Gęstość objętościowa gruntu pod wodą:
-warstwa I
ρD
1.935
t
m
3
:=
Dmin
0.8 m
⋅
:=
ρ'I
1
nI
−
(
)
ρsI ρw
−
(
)
⋅
1.185
t
m
3
⋅
=
:=
ρB
0.9
1.2
ρI
⋅
0.6
ρ'I
⋅
+
1.2
0.6
+
⋅
1.645
t
m
3
⋅
=
:=
ρB 1.645
t
m
3
⋅
=
g
10
m
s
2
=
Oblcizenie oporu granicznego podłoża :
QfNB
B' L'
⋅
1
0.3
B'
L'
⋅
+
NCI
⋅
cruI
⋅
iC
⋅
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅ i
D
⋅
+
1
0.25
B'
L'
⋅
−
NBI
⋅
B'
⋅
ρB
⋅
g
⋅ i
B
⋅
+
⋅
:=
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅ i
D
⋅
QfNB
1.8 2.2
⋅
1
0.3
1.8
2.2
⋅
+
13.10
⋅
31.5
⋅
1
⋅
1
1.5
1.8
2.2
⋅
+
5.26
⋅
0.8
⋅
1.935
⋅
10
⋅
1
⋅
+
1
0.25
1.8
2.2
⋅
−
1.04
⋅
1.8
⋅
1.645
⋅
10
⋅
1
⋅
+
⋅
2850.359
=
:=
QfNL
B' L'
⋅
1
0.3
B'
L'
⋅
+
NCI
⋅
cruI
⋅
iCL
⋅
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
+
1
0.25
B'
L'
⋅
−
NBI
⋅
L'
⋅ ρ
B
⋅
g
⋅ i
BL
⋅
+
⋅
:=
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
QfNL
1.8 2.2
⋅
1
0.3
1.8
2.2
⋅
+
13.10
⋅
31.5
⋅
1
⋅
1
1.5
1.8
2.2
⋅
+
5.26
⋅
0.8
⋅
1.935
⋅
10
⋅
1
⋅
+
1
0.25
1.8
2.2
⋅
−
1.04
⋅
2.2
⋅
1.645
⋅
10
⋅
1
⋅
+
2871.915
=
:=
QfNB
2850.359 kN
⋅
:=
QfNL
2871.915 kN
⋅
:=
STOPA FUNDAMENTOWA B
iD
1
:=
iB
1
:=
iC
1
:=
dla kierunku B
Współczynniki uwzględniające wychylenie
wypadkowej obciążenia całkowitego:
iDL
1
:=
iBL
1
:=
iCL
1
:=
dla kierunku L
Wymiary zredukowane fundamentu:
B'
1.8 m
⋅
=
B'
L'
≤
L'
2.2 m
⋅
=
ρD 1.935
t
m
3
⋅
=
ρB
0.9
1.2
ρI
⋅
0.6
ρ'I
⋅
+
1.2
0.6
+
⋅
1.645
t
m
3
⋅
=
:=
QfNB
B' L'
⋅
1
0.3
B'
L'
⋅
+
NCI
⋅
cruI
⋅
iC
⋅
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
+
1
0.25
B'
L'
⋅
−
NBI
⋅
B'
⋅
ρB
⋅
g
⋅ i
B
⋅
+
⋅
:=
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
QfNL
B' L'
⋅
1
0.3
B'
L'
⋅
+
NCI
⋅
cruI
⋅
iCL
⋅
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
+
1
0.25
B'
L'
⋅
−
NBI
⋅
L'
⋅ ρ
B
⋅
g
⋅ i
BL
⋅
+
⋅
:=
1
1.5
B'
L'
⋅
+
NDI Dmin
⋅
ρD
⋅
g
⋅
QfNB
2850.359 kN
⋅
:=
QfNL
2871.915 kN
⋅
:=
1.3 Sprawdzenie stanu granicznego nośności
:
STOPA FUNDAMENTOWA A
m
0.81
=
Nr m QfNB
⋅
≤
Nr 1787.652 kN
⋅
=
m QfNB
⋅
2308.791 kN
⋅
=
Warunek spełniony!
Nr
m QfNB
⋅
77.43 %
⋅
=
Zapewniony 15% zapas
Nr
m QfNL
⋅
76.847 %
⋅
=
STOPA FUNDAMENTOWA B
Nr m QfNB.
⋅
≤
Nr 1787.652 kN
⋅
=
m QfNB
⋅
2308.791 kN
⋅
=
Warunek spełniony!
QfNB 0.85
⋅
2422.805 kN
⋅
=
Nr
m QfNB
⋅
77.43 %
⋅
=
Zapewniony 15% zapas
Nr
m QfNL
⋅
%
⋅
=
2. Sprawdzenie warunku podłoża uwarstwionego:
1. Piasek gliniasty (B)-( I warstwa)
- spójność obliczeniowa :
cu
r
( )
cur
=
cur 31.5 kPa
⋅
=
cruI
γm cI
⋅
:=
cruI 31.5 kPa
⋅
=
t
1000 kg
⋅
:=
- gęstość obliczeniowa :
ρDrI
ρI γm
⋅
:=
ρBI
r
( )
ρBrI
=
ρD1
r
( )
ρDrI
=
ρrDI 1935
kg
m
3
=
ρI
2.15
t
m
3
⋅
:=
ρBr1
ρrDI 1935
kg
m
3
=
:=
ρBr1
1.935
t
m
3
⋅
:=
- kąt obliczeniowy :
ϕI 20 deg
⋅
=
ϕI
r
( )
ϕrI
=
ϕrI
ϕI γm
⋅
18 deg
⋅
=
:=
tan
ϕI
r
( )
tan
ϕrI
( )
=
tan
ϕrI
( )
0.325
=
- współczynniki odcztytane z normy na podstawie obliczeniowego kąta tarcia :
NDI 5.26
=
NCI 13.10
=
NBI 1.04
=
qfI
1
0.3
B
L
⋅
+
NCI
⋅
cruI
⋅
1
1.5
B
L
⋅
+
NDI
⋅
Dmin
⋅
ρrDI
⋅
g
⋅
+
1
0.25
B
L
⋅
−
NBI
⋅
ρrBI
⋅
B
⋅ g
⋅
+
:=
1
1.5
B
L
⋅
+
NDI
⋅
Dmin
⋅
ρrDI
⋅
g
⋅
qfI
1
0.3
1.8
2.2
⋅
+
13.10
⋅
31.5
⋅
1
1.5
1.8
2.2
⋅
+
5.26
⋅
0.8
⋅
1.935
⋅
10
⋅
+
1
0.25
1.8
2.2
⋅
−
1.04
⋅
1.935
⋅
1.935
⋅
2.2
⋅
10
⋅
+
763.437
=
:=
qfI
763.437 kPa
⋅
:=
2. piasek średni ( II warstwa ) :
ρsII
2.65
t
m
3
:=
- gęstość obliczeniowa :
ρII
1.8
t
m
3
⋅
:=
ρDII
r
( )
ρDrII
=
ρDrII
ρII γm
⋅
:=
ρBII
r
( )
ρBrII
=
ρBrII
ρDrII 1.62
t
m
3
⋅
=
:=
ρDrII 1.62
t
m
3
⋅
=
wnII
0.16
:=
ρdII
ρII
1
wnII
+
1.552
t
m
3
⋅
=
:=
porowatość:
nII
ρsII ρdII
−
ρsII
0.414
=
:=
- kąt obliczeniowy :
ϕII 31 deg
⋅
=
ϕrII
ϕII γm
⋅
27.9 deg
⋅
=
:=
ϕII
r
( )
ϕrII
=
tan
ϕII
r
( )
⋅
tan
ϕrII
⋅
=
tan
ϕrII
( )
0.529
=
- współczynniki :
NDII 20.63
=
NCII 32.67
=
NBII 8.85
=
qfII
1
1.5
B
L
⋅
+
NDII Dmin
⋅
ρDrII
⋅
g
⋅
1
0.25
B
L
⋅
−
NBII
⋅
B
⋅ ρ
BrII
⋅
g
⋅
+
:=
qfII
1
1.5
1.8
2.2
⋅
+
20.63
⋅
0.8
⋅
1.62
⋅
10
⋅
1
0.25
1.8
2.2
⋅
−
8.85
⋅
1.8
⋅
1.62
⋅
10
⋅
+
800.774
=
:=
7
qfII
800.774 kPa
⋅
:=
c) glina piaszczysta (B) (III warstwa) :
- spójność obliczeniowa :
cuIII
40 kPa
⋅
:=
cu
r
( )
cruIII
=
cruIII
γm cuIII
⋅
36 kPa
⋅
=
:=
- gęstość obliczeniowa :
ρBIII
r
( )
ρBrIII
=
ρDIII
r
( )
ρDrIII
=
ρIII
2.20
t
m
3
⋅
:=
ρDrIII
ρIII γm
⋅
:=
ρBrIII
ρDrIII 1.98
t
m
3
⋅
=
:=
- kąt obliczeniowy :
ϕIII
22deg
:=
ϕIII
r
( )
ϕrIII
=
ϕrIII
ϕIII γm
⋅
19.8 deg
⋅
=
:=
tan
ϕIII
r
( )
⋅
tan
ϕrIII
⋅
=
tan
ϕrIII
(
)
0.36
=
- współczynniki :
NDIII
6.20
:=
NCIII
14.65
:=
NBIII
1.42
:=
qfIII
1
0.3
B
L
⋅
+
NCIII
⋅
cruIII
⋅
1
1.5
B
L
⋅
+
NDIII
⋅
Dmin
⋅
ρDrIII
⋅
g
⋅
+
1
0.25
B
L
⋅
−
NBIII
⋅
ρBrIII
⋅
B
⋅ g
⋅
+
:=
1
1.5
B
L
⋅
+
NDIII
⋅
Dmin
⋅
ρDrIII
⋅
g
⋅
qfIII.
1
0.3
1.8
2.2
⋅
+
14.65
⋅
36
⋅
1
1.5
1.8
2.2
⋅
+
6.20
⋅
0.8
⋅
1.98
⋅
10
⋅
+
1
0.25
1.8
2.2
⋅
−
1.42
⋅
1.98
⋅
1.8
⋅
10
⋅
+
915.846
=
:=
qfIII
915.846 kPa
⋅
:=
Grunt nieuwarstwiony ponieważ :
qfI qfII
≤
qfI 763.437 kPa
⋅
=
<
qfII 800.774 kPa
⋅
=
4. SPRAWDZENIE STANU GRANICZNEGO NOŚNOŚCI W POZIOMIE POSADOWIENIA FUNDAMENTU
ZASTĘPCZEGO (W STROPIE WARSTWY SŁABSZEJ)
STOPA FUNDAMENTOWA A
4.1 Obliczenie wymiarów fundamentu zastępczego:
Dane do obliczeń:
Nr 1787.652 kN
⋅
=
h
2.5 m
⋅
:=
γm.
1.1
:=
g
10
m
s
2
=
Warstwa słabsza znajduje się na głebokośc i 2B zatem:
B
h
<
2B
<
1.8m
2.5m
<
3.6m
<
B
1.8 m
⋅
=
b
2
h
3
⋅
1.667 m
⋅
=
:=
L
2.2 m
⋅
=
Wymiary fundamentu zastępczego:
B'
B
b
+
3.467 m
⋅
=
:=
L'
L
b
+
3.867 m
⋅
=
:=
4.2 Średnia obliczeniowa gęstość gruntu zalegająca miedzy stropem warstwy słabszej a poziomem
posadowienia fundamentu:
nI 0.282
=
ρsrI
1
nI
−
(
)
ρsI
⋅
ρw nI
⋅
+
2.185
t
m
3
⋅
=
:=
ρ'h
r
( )
ρ'hr
=
ρ'hr
1.1
1.9 m
⋅ ρ
I
⋅
1.7 m
⋅ ρ
srI
⋅
+
3.6 m
⋅
⋅
2.383
t
m
3
⋅
=
:=
4.3 Pionowa składowa obciążenia fundamentu zastępczego:
N'r
Nr B' L'
⋅ h
⋅ ρ'
hr
⋅
g
⋅
+
2586.225 kN
⋅
=
:=
Nr 1787.652 kN
⋅
=
4.4 Mimośrody fundamentu zastępczego:
e'B
Nr eB
⋅
TrB h
⋅
+
N'r
0
=
:=
TrL 0 kN
⋅
=
e'L
Nr eL
⋅
TrL h
⋅
+
N'r
0
=
:=
Do obliczeń przyjmuje oznaczenie wymiarów zredukowanych fundamentu zastępczego jako:
B.zrfz
L.zrfz
=
=
L
B
Bzrfz
B'
2 e'B
⋅
−
3.467 m
⋅
=
:=
Lzrfz
L'
2 e'L
⋅
−
3.867 m
⋅
=
:=
4.5 Głębokość posadowienia dla fundamentu zastępczego:
D'min
Dmin h
+
3.3 m
⋅
=
:=
4.6 Parametry warstwy słabszej( ):
ϕII 31 deg
⋅
=
tg'α.L
TrL
N'r
0
=
:=
tg'α.B
TrB
N'r
0
=
:=
ϕII
r
( )
ϕ'II
=
ϕ'II
ϕII 0.9
⋅
:=
ϕ'II 27.9 deg
⋅
=
tan
ϕ'II
( )
0.53
=
tg'α.B
tan
ϕ'II
( )
0
=
iD.B
1
:=
iB.B
1
:=
iC.B
1
:=
kierunek B
iD.L
1
:=
iB.L
1
:=
iC.L
1
:=
kierunek L
NDII 20.63
=
NBII 8.85
=
NCII 32.67
=
ρsrII
1
nII
−
(
)
ρsII
⋅
ρw nII
⋅
+
1.966
t
m
3
⋅
=
:=
1
0.3
Bzrfz
Lzrfz
⋅
+
NCII.
⋅
c'uII.
⋅
iC.B.
⋅
1
1.5
Bzrfz
Lzrfz
⋅
+
NDII. D'min
⋅
ρ'Dr
⋅
g
⋅ i
D.L.
⋅
+
1
0.25
Bzrfz
Lzrfz
⋅
−
NBII.
⋅
Lzrfz
⋅
ρ'Br
⋅
g
⋅ i
B.L
⋅
+
ρ'Dr
0.9
2.7 m
⋅ ρ
I
⋅
1.6 m
⋅ ρ'
I
⋅
+
4.3 m
⋅
⋅
1.612
t
m
3
⋅
=
:=
ρ'Br
0.9
ρII
⋅
1.62
t
m
3
⋅
=
:=
NCII. c'uII.
⋅
Q'fNB
Bzrfz Lzrfz
⋅
1
1.5
Bzrfz
Lzrfz
⋅
+
NDII D'min
⋅
ρ'Dr
⋅
g
⋅ i
D.B
⋅
1
0.25
Bzrfz
Lzrfz
⋅
−
NBII
⋅
Bzrfz
⋅
ρ'Br
⋅
g
⋅ i
B.B
⋅
+
⋅
39656.686 kN
⋅
=
:=
Q'fNL
Bzrfz Lzrfz
⋅
1
1.5
Bzrfz
Lzrfz
⋅
+
NDII D'min
⋅
ρ'Dr
⋅
g
⋅ i
D.L
⋅
1
0.25
Bzrfz
Lzrfz
⋅
−
NBII
⋅
Lzrfz
⋅
ρ'Br
⋅
g
⋅ i
B.L
⋅
+
⋅
40253.105 kN
⋅
=
:=
SPRAWDZENIE STANU GRANICZNEGO:
m
0.81
:=
Nr m Q'fNB
⋅
≤
N'r 2586.225 kN
⋅
=
m Q'fNB
⋅
32121.915 kN
⋅
=
Warunek spełniony
N'r m. Q'fNL
⋅
≤
N'r 2586.225 kN
⋅
=
m Q'fNL
⋅
32605.015 kN
⋅
=
Warunek spełniony
Wniosek:
Nie trzeba poszerzać stopy, spełnia ona założone wymagania.
STOPA FUNDAMENTOWA B
4.1 Obliczenie wymiarów fundamentu zastępczego:
Dane do obliczeń:
Nr 1787.652 kN
⋅
=
h
1.7 m
⋅
:=
γm..
1.1
:=
g
10
m
s
2
=
Warstwa słabsza znajduje się na głebokośc i mniejszej od B zatem:
h
B
<
1.7m
1.8m
<
h
1.7 m
⋅
=
b
h
3
0.567 m
⋅
=
:=
Wymiary fundamentu zastępczego:
B'
B
b
+
2.367 m
⋅
=
:=
L'
L
b
+
2.767 m
⋅
=
:=
4.2 Średnia obliczeniowa gęstość gruntu zalegająca miedzy stropem warstwy słabszej a poziomem
posadowienia fundamentu:
ρ'h
r
( )
ρ'hr
=
ρ'hr.
1.1
ρI
⋅
2.365
t
m
3
⋅
=
:=
4.3 Pionowa składowa obciążenia fundamentu zastępczego:
N'r.
Nr B' L'
⋅ h
⋅ ρ'
hr.
⋅
g
⋅
+
2050.905 kN
⋅
=
:=
Nr 1787.652 kN
⋅
=
4.4 Mimośrody fundamentu zastępczego:
e'B.
Nr eB
⋅
TrB h
⋅
+
N'r.
0
=
:=
TrL 0 kN
⋅
=
e'L.
Nr eL
⋅
TrL h
⋅
+
N'r.
0
=
:=
Do obliczeń przyjmuje oznaczenie wymiarów zredukowanych fundamentu zastępczego jako:
zrfz
zrfz
L.
B.
=
=
L
B
Bzrfz.
B'
2 e'B.
⋅
−
2.367 m
⋅
=
:=
Lzrfz.
L'
2 e'L.
⋅
−
2.767 m
⋅
=
:=
4.5 Głębokość posadowienia dla fundamentu zastępczego:
D'min.
Dmin h
+
2.5 m
⋅
=
:=
4.6 Parametry warstwy słabszej( ):
ϕIII 22 deg
⋅
=
tg'α.L
TrL
N'r
0
=
:=
tg'α.B
TrB
N'r
0
=
:=
ϕIII
r
( )
ϕ'III
=
ϕ'III
ϕIII 0.9
⋅
19.8 deg
⋅
=
:=
tan
ϕ'III
( )
0.36
=
tg'α.B
tan
ϕ'III
( )
0
=
iD.B.
1
:=
iB.B.
1
:=
iC.B.
1
:=
kierunek B
iD.L.
1
:=
iB.L.
1
:=
iC.L.
1
:=
kierunek L
NDIII 6.2
=
cuIII
r
( )
c'uIII
=
c'uIII
γm cIII
⋅
36 kPa
⋅
=
:=
NBIII 1.42
=
NCIII 14.65
=
ρsrI.
1
nI
−
(
)
ρsI
⋅
ρw nI
⋅
+
2.185
t
m
3
⋅
=
:=
ρ'Dr.
0.9
ρI
⋅
1.935
t
m
3
⋅
=
:=
ρ'Br.
0.9
ρIII
⋅
1.98
t
m
3
⋅
=
:=
Q'fNB
Bzrfz. Lzrfz.
⋅
1
0.3
Bzrfz.
Lzrfz.
⋅
+
NCIII
⋅
c'uIII
⋅
iC.B.
⋅
1
1.5
Bzrfz.
Lzrfz.
⋅
+
NDIII D'min
⋅
ρ'Dr.
⋅
g
⋅ i
D.B.
⋅
+
1
0.25
Bzrfz.
Lzrfz.
⋅
−
NBIII
⋅
Bzrfz.
⋅
ρ'Br.
⋅
g
⋅ i
B.B.
⋅
+
...
⋅
kN
⋅
=
:=
1
1.5
Bzrfz.
Lzrfz.
⋅
+
NDIII D'min
⋅
ρ'Dr.
⋅
g
⋅ i
D.B.
⋅
Q'fNB.
2.367 2.767
⋅
1
0.3
2.367
2.767
⋅
+
14.65
⋅
36
⋅
1
⋅
1
1.5
2.367
2.767
⋅
+
6.2
⋅
2.5
⋅
1.935
⋅
10
⋅
1
⋅
+
1
0.25
2.367
2.767
⋅
−
1.42
⋅
2.367
⋅
1.98
⋅
10
⋅
1
⋅
+
⋅
9168.25
=
:=
Q'fNL..
Bzrfz. Lzrfz
⋅
1
0.3
Bzrfz.
Lzrfz
⋅
+
NCIII
⋅
c'uIII
⋅
iC.L.
⋅
1
1.5
Bzrfz.
Lzrfz
⋅
+
NDIII D'min
⋅
ρ'Dr
⋅
g
⋅ i
D.L.
⋅
+
1
0.25
Bzrfz.
Lzrfz
⋅
−
NBIII
⋅
Lzrfz
⋅
ρ'Br
⋅
g
⋅ i
B.L.
⋅
+
...
⋅
kN
⋅
=
:=
1
1.5
Bzrfz.
Lzrfz
⋅
+
NDIII D'min
⋅
ρ'Dr
⋅
g
⋅ i
D.L.
⋅
Q'fNL.
2.367 2.767
⋅
1
0.3
2.367
2.767
⋅
+
14.65
⋅
36
⋅
1
⋅
1
1.5
2.367
2.767
⋅
+
6.2
⋅
2.5
⋅
1.935
⋅
10
⋅
1
⋅
+
1
0.25
2.367
2.767
⋅
−
1.42
⋅
2.767
⋅
1.98
⋅
10
⋅
1
⋅
+
⋅
9226.156
=
:=
Q'fNB.
9168.25 kN
⋅
:=
Q'fNL.
9226.156kN
:=
SPRAWDZENIE STANU GRANICZNEGO:
m
0.81
:=
N'r.. m Q'fNB
⋅
≤
N'r. 2050.905 kN
⋅
=
m Q'fNB.
⋅
7426.283 kN
⋅
=
Warunek spełniony
N'r. m Q'fNL.
⋅
≤
N'r. 2050.905 kN
⋅
=
m Q'fNL.
⋅
7473.186 kN
⋅
=
Warunek spełniony
Wniosek:
Nie trzeba poszerzać stopy, spełnia ona założone wymagania.
6 . SPRAWDZENIE STANU GRANICZNEGO UŻYTKOWANIA .
6.1 Osiadanie poszczególnych stóp
:
- stopa A:
s1
12.14 mm
⋅
:=
- stopa B:
s2
10.02 mm
⋅
:=
6.2 Pola podstaw poszczególnych stóp :
Wszystkie stopy mają takie same pola podstaw
:
F
B L
⋅
:=
F
3.96 m
2
⋅
=
6.3 Dopuszczalne średnie osiadania dla hal przemysłowych :
sdop
5.0 cm
⋅
:=
6.4 Osiadanie średnie budowli:
ssr
s1 s2
+
(
)
F
⋅
2 F
⋅
1.108 cm
⋅
=
:=
ssr 1.108 cm
⋅
=
<
sdop 5 cm
⋅
=
6.5 Różnica osiadań fundamentów sąsiednich A i B :
∆sa
s2 s1
−
:=
∆sa
2.12
−
mm
⋅
=
Osiowe odległości sąsiednich stóp
:
l
29.00 m
⋅
:=
∆sa
l
0.00009
−
m
=
<
0.003
Na podstawie powyższych obliczeń można stwierdzić , że osiadania projektowanej
hali nie jest przekroczone .
9168.25
9226.156