Podstawy Elektrotechniki - Stany nieustalone
I. Metoda Klasyczna
Zadanie k.1
Wyznaczyć prąd iw na wyłączniku.
i1
2R
R
i2
t=0
iw=?
I
i4
E
i3
L
R
Układamy równania na podstawie schematu.
iw + i2 = i4
1
i2 = I
3
2
i1 = I
3
di4
E - i3R + L = 0
dt
1
iw = i4 - i2 = i4 - I
3
i3 + i4 = I
i3 = I - i4
1
iw = i4 - I
3
di4
E - RI + i4R + L = 0
dt
diL R RI - E
+ iL =
dt L L
diL R
+ iL = 0
dt L
R RI - E
iL2 + iL =
L L
Równanie charakterystyczne:
R
r + = 0
L
R
r = -
L
R
- t
L
iLp (t) = Ae
E
iLu (t) = I -
R
iL (0- ) = iL (0+ )
R
- t
I E E
L
- = Ae + I -
2 4R R
R
- t
I E E
ł ł
L
- - ł - ł
I = Ae
2 4R R
ł łł
I 3E
A = - +
2 4R
R
I 3E
ł łe - L t
iLp (t) = - +
ł ł
2 4R
ł łł
R
ł- I 3E
łe- L t + I - E
iL (t) = iLp (t) + iL4u (t) = +
ł ł
2 4R R
ł łł
R R
- t - t
ł- I 3E E 1 2 E
ł ł- I 3E
ł
L L
iw (t) =i (t) - i2 (t) = + " e + I - - I = + " e + I -
ł ł ł ł
L
2 4R R 3 2 4R 3 R
ł łł ł łł
Zadanie k.2
Znalezć taką chwilę czasu tx aby spełniony był warunek i1(tx)=i2(tx)
I II
Rozpatrujemy układ I.
2
i1R + L i1 = 0 / : L
R
i1/ + i1 = 0
L
Równanie charakterystyczne:
2
R
r + = 0
L
R
r = -
L
i1 P (t) = Aer t
i1U (t) = 0
i1(t) = i1U (t) + i1 P (t) = Aert
E
i1(0- ) = i1(0+ ) = = A
2R
Uzyskujemy wyrażenie na i1(t)
R
- t
E E
L
i1(t) = er t = e
2R 2R
Dla układu II możemy napisać:
i2R + L/i2 = E
składowa przejściowa:
Li2 / + i2R = 0/ : L
R
i/ + i2 = 0
2
L
Równanie charakterystyczne;
R
r + = 0
L
R
r0 = -
L
r t
i ( t ) = Ae
2
P
E
i ( t ) =
2 u
R
E
0
i2 (t) = i2P (t) + i2u (t) = Aer t +
R
3
i2 (0- ) = i2 (0+ ) = 0
E
A + = 0
R
E
A = -
R
R
ł - t ł
E
L
ł
i2 (t) = e
ł1- ł
ł
R
ł łł
Wyliczamy t przy którym prądy i1(t)=i2(t)
R R
- tx ł - tx ł
E E 2R
L
ł1- L ł
e = e /
ł ł
2R R E
ł łł
R R
- tx ł - tx ł
L L
ł
e = 2ł1- e
ł ł
ł łł
R R
- tx - tx
L L
e + 2e = 2
R
- tx
L
3e = 2 / : 3
R
- tx
2
L
e =
3
R
- tx
2
L
ln e = ln
3
R 2
- tx = ln
L 3
L 2 L 3
tx = - ln = ln
R 3 R 2
L 3
Prądy i1(t),i2 (t) są sobie równe dla t= ln
R 2
Zadanie k.3
3L
Obliczyć napięcie UC przy założeniu, że R =
C
Na podstawie schematu można napisać poniższe równania :
i1R + Li12 = Uc
4
i1 + i2 = Izr
2
i2 = CUc
Wyznaczamy równanie opisujące uc(t) poprzez przekształcenia:
2
i1 + CUc = I
2
i1 = I - C "UC
2 2
i12 = -C "Uc
2 2 2
(I - C "Uc )R + L(- C "Uc ) = Uc
2 2 2
I " R - RC "Uc - L " C "Uc = Uc
2 2 2
I " R = L "C "Uc + RC "Uc + Uc
Wyznaczamy składową przejściową:
2 2 2
LC "Uc + RC "Uc + Uc = 0
R 1
2 2 2
Uc + Uc + = 0
L LC
Równanie charakterystyczne jest postaci:
R 1
2
r + r + = 0
L LC
R2 4
" = -
L2 LC
3L
Korzystając z założenia R = uzyskujemy:
C
3L
4 3 4 1
C
" = - = - = -
L2 LC LC LC LC
1 1
" = j2 ! " = j
LC LC
R 1 1
r1,2 = - ą j
2L 2 LC
R 1 1
ą = - , =
2L 2 LC
Znając pierwiastki równania charakterystycznego możemy wyznaczyć składową przejściową:
UCp (t) = A1eąt sin t + A2eąt cos t
Wyznaczamy składową ustaloną :
UCu (t) = IR
Napięcie na kondensatorze wyznaczamy jako sumę składowej przejściowej i ustalonej :
5
UC (t) = A1eąt sin t + A2eąt cos t + IR
Wyznaczamy współczynniki A1 i A2 z warunku komutacji dla kondensatora i cewki:
i1(0- ) = i1(0+ )
i1(0- ) = I - C "UC '(0+ )
UC '(t) = A1ą " eąt sin t + A1 " eąt cos t + A2ąeąt cos t + A2 " eąt sin t
UC '(0+ ) = A1 + A2ą
CUC (0+ ) = CA1 + CA2ą
UC (0- ) = U (0+ )
C
UC (0- ) = 0
UC (0) = A2 + IR = 0
A2 = -IR
i1(0+ ) = I - A1C - A2ąC = I
- A1C = A2ąC
A2=-IR więc podstawiając uzyskujemy:
- A1C = -IRąC
A1 = IRą
IRą ą
A1 = = IR
Ostatecznie sumując składowe otrzymujemy:
ą
UC (t) = IR eąt sin t - I Reąt cos t + IR
ł ą ł
UC (t) = IRł eąt sin t - eąt cos t +1ł
ł ł
ł łł
Przebieg uc(t) dla R=1 &! L=100 H 10 F I=1mA przedstawiono na rys. k3
R
1 2
W
L I
C
0
6
2.0mV
1.0mV
0V
0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms
V(U5:2)
Time
Rys. k.3
Zadanie k.4
Obliczyć napięcie na kondensatorze C, gdy R1=2R, R2=3R, R3=2R, e(t) = Em sin t
1 1 E
ł ł
V + j C + =
ł ł
2 R 2 R 2 R
ł łł
V (2 + jC2R) = E
E
V =
2 + 2 jRC
jt
Eme
V =
2(1 + jRC)
Em 1
j(t - )
V = e = arctg(RC)
2 2
2
1+ R2C
Em
1
j(t- )
V = U = e
c
2 2
2
1 + R2C
U = Im{U }
c1 c
Em
1
U (t) = sin(t - )
c1
2 2 2
2
1 + R C
U (0- ) = U (0+ )
c c
Em
1
U (0- ) = sin(- ) = U (0+ )
c c
2 2
2
1 + R2C
7
W chwili t=0 następuje przełączenie wyłącznika W:
C
Rz Uc
5
Rz = R
6
i(t)Rz = -Uc (t)
'
CU (t) = i(t)
c
'
CRzU (t) + U (t) = 0
c c
1
r = -
RzC
U (t) = Aert
cp
t = 0 A = U
0
U (0- ) = U (0+ ) A = U (0+ )
c c c
U (t) = U (t) + U (t) przy czym U (t) = 0
c cp cu cu
U (t) = U (0+ )ert
c c
1
- t
Em
1
RzC
Uc (t) = sin(- ) " e
2 2
2
1 + R2C
Zadanie k.5
L
Wyznaczyć napięcie na kondensatorze, dla R= .
C
Układamy równania po otwarciu klucza :
2R " i + Uc + Li' = 0
'
C "Uc = i
'
C "Uc' = i'
' "
2R " C "Uc + Uc + L " CUc = 0
8
" '
L " C "Uc + 2R " CUc + Uc = 0
gdzie: i to prąd kondensatora.
Składowa przejściowa:
" '
LC "Uc + 2RCU +U = 0
c c
2R 1
" '
Uc + Uc + U = 0
c
L Lc
Równanie charakterystyczne ma postać:
2R 1
2
r + r + = 0
L Lc
L
4
4R2 4 4
c
"= - = - = 0
L2 Lc L2 Lc
1
U (t) = ( A1 + A2 t) ert
c
p
składowa ustalona:
Uc (t)=0
u
Całkowite napięcie wynosi:
Uc (t) = ( A1 + A2 t) ert
Z warunku komutacji dla kondensatora otrzymujemy:
U (0- ) = U (0+ )
c c
U (0- ) = 0
c
U (0+ ) = (A1 + A2t)ert = A1 , stąd A1 = 0
c
Z warunku komutacji dla cewki:
ic (0- ) = I = i(0+ )
'
ic (0+ ) = CUc (0+ )
'
U = A1 r ert + A2ert + A2trert
c
'
CU (0+ ) = (A1r + A2 )C
c
(A1r + A2 )" C = I
więc
I
A2 =
C
Ostatecznie:
9
I
0
Uc (t) = ter t
C
- b R
gdzie r0 = = -
2a L
R2
1 2 3
1 2
W
L
I1
R1 C
0
Przebieg uc(t) (dla R=10 &! R=20 &! L=100 H C=1 F) przedstawiono na rys. k.5
12mV
8mV
4mV
0V
0s 20us 40us 60us 80us 100us 120us 140us 160us
V(3)
Time
Rys. k.5
Zadanie k.6
Obliczyć napięcie na kondensatorze, jeżeli:
e1(t) = E1m "sin t
e2(t) = E2m " sin t
E1m > E2m
L
R = ; XL >XC
8C
oraz
uCu (t) = U sin(t - )
cm
10
Po zamknięciu wyłącznika otrzymamy:
e1(t) = i " R +Uc => e1'(t) = i'"R +Uc '=> i'"R = e1'(t) -Uc '
Uc = L "iL'+e2(t)
i = iL + iC => i'= iL '+iC '
C "Uc '= iC => iC '= C "Uc''
Uc = L "i'-L "iC '+e2(t)
Uc = L "i'-L "C "Uc''+e2(t)
L L
Uc = e1'(t) - Uc'-L "C "Uc''+e2(t)
R R
L L
L "C "Uc''+ Uc'+Uc = e1'(t) + e2(t)
R R
Dla składowej przejściowej otrzymujemy:
L
L "C "Uc ''+ Uc '+Uc = 0
R
1 1
Uc ''+ Uc '+ Uc = 0
RC LC
1 1
r2 + r + = 0
RC LC
1 1 1 4 4
" = - 4 = - = > 0
2
L
R2C LC LC LC
2
C
8C
2
" =
LC
1 1
r1,2 = - ą
2RC
LC
1 3
r1 = - ; r2 = -
LC LC
Równanie napięcia dla składowej przejściowej ma postać:
11
1 2
UCP (t) = A1 "er "t + A2 "er "t
Całkowite napięcie na kondensatorze:
1 2
UC (t) = A1 " er "t + A2 " er "t + U sin(t - )
cm
Z warunków komutacji wynika:
U (0- ) = U (0+ )
c c
iL (0- ) = iL (0+ )
Wyznaczamy wartości prądu płynącego przez cewkę i napięcia na kondensatorze przed
komutacją:
E2 E2 E2 j90o
I = = = e-
j90o
j(X - X ) X - X
(X - X )e
L C L C
L C
E2
i(t) = sin(t - 90o )
X - X
L C
E2 (- jX ) E2 X
C C
UC = I " (- jX ) = = -
C
j(X - X ) X - X
L C L C
E2 xC
uc (t) = - sin t
X - X
L C
E
iL (0- ) = - = iL (0+ )
X - X
L C
uc (0-) = 0 = uC (0+ ) = A1 + A2 + U sin(-)
cm
e1(0+ ) -U (0+ )
C
iL (0+ ) = - C "UC '(0+ )
R
1 2
UC '= A1 " r1 " er "t + A2 " r1 " er "t +U cos(t -) "
cm
UC '(0+ ) = A1 " r1 + A2 " r1 + Ucm cos(-)
e(0+ ) = 0
(A1 + A2 +Ucm sin(-)) E
iL (0+ ) = - - CA1r1 - CA2r2 - CU cos(-) = -
cm
R X - X
L C
A1 + A2 + Ucm sin(-) = 0
Z ostatniego równania wyznaczamy A2 i wstawiamy do równania przedostatniego. W ten
sposób otrzymujemy niewiadome A1 i A2. Znając A1 i A2 otrzymujemy ostateczny wynik
1 2
uC (t) = A1 " er "t + A2 " er "t +Ucm sin(t - )
12
Zadanie k.7
1
Obliczyć prąd płynący przez indukcyjność L, dla założenia L = = 2R .
C
, L 1
e(t) = Em sin t = = 2R
C
0
R
1 2
W
e(t)
L
C
0
e(t) = iR + Uc
Uc = LiL '
CUC '= iC
e(t) - LiL '
e(t) = iR + LiL '! i =
R
e(t) - LiL '
= CUC '+iL
R
UC '= LiL ''
e(t) - LiL '
= LCiL ''+iL
R
e(t) - LiL '= RCLiL ''+RiL
e(t) = RCLiL ''+LiL '+RiL
Wyznaczamy składową przejściową:
RCLiL '+LiL '+RiL = 0 RCL
1 1
iL ''+ iL '+ = 0
RC LC
1 1
2
r + r + = 0
RC LC
1 4
" = -
2
R2C LC
1 4 4 4 4 - 4
" = - = - = - = 0
2 2 2
1
L2 2 LC L2C LC LC
2
L2C
C
LC
4
13
0
iL = (A1 + A2t)er t
p
1
gdzie r0 = -
2RC
Wyznaczamy składową ustaloną:
e(t) = Em " sin( " t)
j"
E = Em " e
E
I =
Z
Dla rezonansu X = X = 2R
L C
i = 0
iL = iC
j0
E Eme Em j90
I = = = e-
L
j90
jX X e X
L L L
Em
iL u = sin(t - 90)
X
L
Sumaryczny prąd iL(t):
rt
Em
iL = (A1 + A2t)e + sin(t - 90)
X
L
Z warunków komutacji wyznaczamy współczynniki A:
iL (0- ) = iL (0+ )
iL (0- ) = 0
Em
iL (0+ ) = A1 - = 0
X
L
Em
A1 =
X
L
UC (0- ) = UC (0+ )
Em X
C
uC (t) = sin(t - 90 - 1 )
2
2
R + X
C
X
C
1 = arctg
R
Em X
C
uC (0- ) = sin( -90 - 1 )
2
2
R + X
C
uC (0+ ) = LiL ' (0+ )
Em
rt rt rt
iL ' = A1re + A2e + A2tre + cos(t - 90)
X
L
14
iL '(0+ ) = A1 r + A2
Em X
C
sin( -90 - 1 ) = LA1r + LA2
2
R + X
C
X = X
C L
Em Em
sin( -90 - A) - r = A2
2
2
X
R + X C
C
Ostatecznie
ł łł
ł ł
E E E
m m m
ł łt śł rt E m
iL = + sin( 90 - ) - r e + sin( t - 90 )
ł
1
2
2
ł ł
X X X
R + X
ł L C śł L
ł L łł
ł ł
gdzie:
X
C
1 = arctg
R
1
r = -
2RC
Wykres uc(t), il(t) (dla R=4 &! L= 1.273 mH C=19.894 uF Emax=3 V f=1kHz)
przedstawiono na rys. k.7
4.0
0
-4.0
0s 5ms 10ms 15ms 20ms
V(V1:+) I(L1)
Time
Rys. k.7
Zadanie k.8
Obliczyć napięcie na kondensatorze C.
i(t) = Im"sin(t + Ć)
15
Równanie wyjściowe:
dUc 1
C + "Uc = i(t)
dt R
Składowa przejściowa na kondensatorze:
-t
RC
Ucp (t) = A " e
Składowa ustalona:
R " Im
U (t) = sin(t + Ć - ar ctgRC)
cu
1+ (RC)2
Całkowite napięcie na kondensatorach:
U (t) = Ucp (t) +Ucu (t)
c
Z warunku początkowego:
-t
R " Im
RC
UC (t) = A" e + sin(t + Ć - arctgRC)
1+ (RC)2
U (0- ) = Uc (0+ ) = U (0) = 0
c c
-t
R " Im
RC
0 = A " e + sin(Ć - arctgRC)
1+ (RC)2
R " Im
A = - sin(Ć - arctgRC)
1 + (RC)2
t
-
R " Im
RC
Uc(t) = [sin(t + Ć - arctgRC) - e " sin(Ć - arctgRC)]
1+ (RC)2
Zadanie k.9
Obliczyć napięcie na kondensatorze C1.
16
E = UC1 + i1 " R
i1 " R = UC 2 + i2 " R
I = i1 + i2
E = UC1 + C1 "UC1'"R
E = UC1(0+ ) + C1 " R +U '(0+ )
C1
i1 = C1 "UC1'(t)
i2 = C2 "UC 2 '(t)
1
i1'"R = (i - i1) + R(i'-i1')
C2
1 1
i1'"R = i - i1 + Ri'-Ri1'
C2 C2
E -UC1
i1 =
R
1 1
i1'"R + i1 + Ri1'= i + Ri'
C2 C2
E -UC1 1
-U '+ -UC1'= i + Ri'
C1
RC2 C2
i = C1UC1'
E UC1 C1
- 2UC1'+ - = UC1'+RC1UC1''
RC2 RC2 C2
E C1 UC1
= RC1UC1''+ UC1'+ + 2UC1'
RC2 C2 RC2
ł ł UC1
E C1
ł ł
= RC1UC1''+UC1'"ł2 + +
RC2 C2 ł RC2
ł łł
ł ł UC1
C1
ł ł
RC1UC1''+UC1'"ł2 + + = 0
C2 ł RC2
ł łł
2C2 + C1 1
UC1''+ UC1'+ UC1 = 0
RC2C1 R2C2C1
2
ł 2C2 + C1 ł
1
ł ł - 4
" =
ł
RC2C1 ł R2C2C1
ł łł
2 2
4C2 + 4C2C1 + C12 - 4C2C1 4C2 + C12
" = = > 0
2 2 2
R2C12C2 R2C1 C2
17
2 2
- 2C2 - C1 1 4C2 + C1
r1 = -
2 2
2RC1 2 R2C1 C2
2
- 2C2 - C1 1 4C2 + C12
r1 = +
2 2
2RC1 2 R2C1 C2
- +
"Q(0 ) = "Q(0 )
-
" C1 = E " C1
"Q(0 ) = U C1
-
(0+ ) " C1 -UC 2 (0+ ) " C2
"Q(0 ) = U C1
1 2
UCP (t) = A1 " er "t + A2 " er "t
UCU (t) = E
1 2
UC1(t) = A1 " er "t + A2 " er "t + E
1 2
UC1'(t) = r1A1 " er "t + r2 A2 " er "t
UC1'(0+ ) = r1 A1 + r2 A2
UC1'(0+ ) = 0
UC1(0+ ) = E
Na podstawie powyższych równań można wyznaczyć stałe A1 i A2.
Zadanie k.10
Obliczyć prąd płynący przez rezystor R3 po otwarciu wyłącznika W.
Po otwarciu wyłącznika prąd i1=i3 :
di3 (t)
i3 (t) " (R1 + R3 ) + L3 - E = 0
dt
Równanie charakterystyczne:
18
di3(t)
i3 (t) " (R1 + R3 ) + L3 = 0
dt
R1 + R3 + r " L3 = 0
R1 + R3
r0 = -
L3
i3 (t) = iu + ip
0
ip (t) = A " er "t
E
iu (t) =
R1 + R3
E
0
i3 (t) = A " er "t +
R1 + R3
E
i3 (0+ ) = A +
R1 + R3
Z warunków komutacji
WL (0- ) = WL (0+ )
) = )
"Ś(0- "Ś(0+
) =i2 (0- ) " L2 + i3 (0- ) " L3
"Ś(0-
) =i3(0+ ) " L3
"Ś(0+
E " R3
i2 (0- ) =
RZ
E " R2
i3 (0- ) =
RZ
E
i3 (0+ ) = A +
R1 + R3
i3 (t) = ip (t) + iu (t)
Otrzymujemy:
E " R3 E E
" L2 + " L3 = ( + A) " L3
RZ R3 R1 + R3
gdzie
RZ = R1 " R2 + R1 " R3 + R2 " R3
po wyliczeniu A:
E R3L2 E
A = ( " +R2 ) -
RZ L3 R1 + R3
zatem:
19
E R3L2 E
i3 (t) = ip (t) + iu (t) = ( + R2 ) " er"t + " (1- er"t )
RZ L3 R1 + R3
Narysować przebiegi prądów dla R1= R2= R3=1 &! L2= L3= 1 uH oraz E=3V
Zadanie k.11
W chwili t=0 zwarto wyłącznik W. Obliczyć przebieg napięcia na C3 wykorzystując
szczególe warunki komutacji.
Równania opisujące układ:
t t
1 1
E -
+"i(t)dt - C2 +"i(t)dt - i2 (t)2R = 0
C1 0
0
i=i1+i2
U
c2
i2 =
2R
i1=C2Uc2
Zadanie k.12
Znalezć napięcie na kondensatorze C1.
R t=0
.e(t) C C Uc
e(t)= Emsin(wt + )
Po zamknięciu klucza:
20
duc
e(t) = 2C " R + uc
dt
duc 1 1
+ uc = e(t)
dt 2RC 2RC
1
r + = 0
2RC
1
r = -
2RC
Rozwiązując powyższe równanie różniczkowe uzyskujemy:
-1
t
2RC
u (t) = Ae
cp
Składowa ustalona napięcia:
Em
ucu(t) = " sin[t + - arctg(2RC)]
1 + (2RC)2
Do wyznaczenia stałej A wykorzystuje się warunek komutacyjny dla Qc(0-)=Q(0+)
Zadanie k.13
Znalezć prąd płynący przez kondensator C2.
Stosujemy następujące oznaczenia : i1=iR i2=iC2
Równania na podstawie schematu mają postać :
E = UC1 + i1R
i1R = UC 2
i = i1 + i2
Przekształcając powyższe równania otrzymujemy:
E -UC1 = UC 2
-UC12 = UC 22
21
i = C1UC12
i
UC12 =
C1
i
- = UC 22
C1
i = i1 + i2 więc:
1
- (i1 + i2 ) = UC 22
C1
UC 2
i1 = ,i2 = C2UC 22
R
UC 2
1 ł ł
2
- ł + C2U = UC 22
ł
C 2
C1 ł R
łł
-UC 2 - C2RUC 22 = RC1UC 22
-UC 2 - (RC1 + RC2 )UC 22 = 0
UC 2 + (RC1 + RC2 )UC 22 = 0
1
UC 22 + UC 2
R(C1 + C2)= 0
Wyznaczamy składową przejściową:
Równanie charakterystyczne ma postać:
1
r + = 0
R(C1 + C2 )
1
r = -
R(C1 + C2 )
UC 2 p (t) = Aert
Składowa ustalona wynosi:
UC 2u (t) = 0
Całkowite napięcie ma postać :
UC 2(t) = Aert
Ponieważ :
) = )
"Q(0- "Q(0+
) = 0
"Q(0-
) = -Uc1(0+ )C1 + Uc2(0+ )C2 = 0
"Q(0+
UC1(0+ )C1 = UC 2(0+ )C2
22
E = UC1 +U
C 2
Możemy napisać:
E = UC1(0+ )+UC 2(0+ )
E -UC 2(0+ ) = UC1(0+ )
Korzystając z ostatniego warunku komutacji szczególnej:
2
UC1(0+ ) = UC 2(0+ )C
C1
EC1 - C1UC 2(0+ ) = UC 2(0+ )C2
EC1 = UC 2(0+ )(C1 + C2 )
EC1
UC 2(0+ ) = = A
C1 + C2
Ostatecznie:
EC1
UC 2(t) = ert
C1 + C2
Wyznaczamy szukany prąd i2 :
i2 = C2UC 22
EC1
UC 22 (t) = rert
C1 + C2
Ostateczna odpowiedz :
1
EC1C2 - R(C1+C2 )t
i2 (t) = - e
2
(C1 + C2 ) R
0
C1
1 2
1 2 3
W
R
E
C2
0
Wykresy dla R=10 &! C1= C2= 1F E=3V
23
3.0V
2.0V
1.0V
0V
0s 10us 20us 30us 40us 50us 60us 70us
V(3) V(2)
Time
150mA
100mA
50mA
0A
0s 10us 20us 30us 40us 50us 60us 70us
-I(R3)
Time
Zadanie k.14
Obliczyć rozpływ prądów.
Przyjąć następujące dane:
E= 5V; R1=R3 = 1 K&!, R2=2 K&! L1=L3=1 H, L2=2H
Rozwiązanie:
24
ł ł
ł ł ł ł
R1 +R2
ł ł
E E
L1 +L2
ł łe-ł łt + E
ł łł
i (t) = -
ł ł
R3 " R2
R1 + R2
+ R1 R1 + R2 ł
ł
R3 + R2
ł łł
ł ł
1+2
ł ł
ł ł
-ł ł
t
5 5
ł łe ł 1+2 łł + 5
i (t) = -
1" 2
ł 1 + 2 ł 1+ 2
+1
ł ł
ł 1 + 2 łł
ł ł
ł ł
5 5
ł łe-t 5 4 5
i (t) = - + = e-t +
5
ł 3 ł 3 3 3
ł ł
ł 3 łł
L2
L1 R1
R3
R2
E
L3
2
W
1
0
Wykres dla tematowych wartości elementów:
3.0mA
2.0mA
1.0mA
0A
0s 10ns 20ns 30ns 40ns 50ns 60ns 70ns
I(R1) -I(R2) -I(L3)
Time
25
Zadanie k.15
Obliczyć napięcie na kondensatorze C2 przy założeniu, że kondensator C1 jest naładowany.
W
R
C2 U2
Q0
C1
Rozwiązanie:
Q0
U2 (t) = (1- ert )
C1 + C2
C1 + C2
gdzie: r = -
RC1C2
Zadanie k.16
W chwili t=0 następuje przełączenie wyłącznika, obliczyć prąd i.
Zadanie k.17
Obliczyć prąd kondensatora i2, jeżeli w chwili t=0 następuje przełączenie kluczy w układzie
jak na rysunku.
0 0
C2
R1
1 2 1 2
U1 U2
1
2u
V1
3Vdc C1
R2
1u
2
0
26
Oznaczamy szukany prąd jako i.
Obliczamy pojemność zastępczą kondensatorów (po chwili t=0).
C "2C 2
Cz = = C
C + 2C 3
U0 = UCz + i " 2R
2
i = CUC /
3
4
U0 = uCz + RCuCz /
3
Uzyskujemy równanie charakterystyczne:
4
1+ R " C " r = 0
3
3 1
r = - "
4 RC
uC p (t) = Aert
z
uC u (t) = 0
z
ucz (t) = uC p (t) = Aert
z
) =
"Q(0- "Q(0 )
+
Q(0- ) = QC (0- ) + Q2C (0+ )
QC (0- ) = E "C
Q2C (0+ ) = 0
UC (0+ ) = E
0
UC (t) = Aer t ! UC (0) = E = A
3
- "t
3 1
ł łe = - 3 E
/ r0t r0t r0t
4"RC
i(t ) = CU = CAre = CEre = CE - " " " e
ł ł
C
4 RC 4 R
ł łł
Wykres prądu (dla R1=1 &! R2=2 &! C1=1 F C2=2 F E=3V) przedstawiono na rys. k.17
1.5A
1.0A
0.5A
0A
0s 1.0us 2.0us 3.0us 4.0us 5.0us
-I(R2)
Time
Rys. k.17
27
Zadanie k.18
Obliczyć napięcie na kondensatorze C1, jeżeli E1 < E2.
0
R1 R2
1 2 3 4
1 2
W
E1
C1 C2
E2
0
Wykres uc1(t) (dla R1=2 k&!, R2=1 k&! , C1= 100 uF, C2=10 uF, E1=1V,E2=2V) przedstawiono
na rys. k.18
1.0V
0.9V
0.8V
0.7V
0s 0.2us 0.4us 0.6us 0.8us 1.0us
V(2)
Time
Rys. k.18
28
Wyszukiwarka
Podobne podstrony:
1a Zadania i metody automatycznej regulacjiTreść Zadania metody portfelowemechanika budowli zadania z metody siłZadania, metody i algorytmy robotykiZadania Metodyzadania p geometryczne i klasyczneZADANIA †ZASADY †METODY Rewalidacja dzieci upoĹ›ledzonych umysĹ‚owoMetody numeryczne zadania(1)Metody Probabilistyczne zadania wyrównawczeKratownice (zadania i różne metody)Metody i Algorytmy Zadania7 2 2 Metody wyboru regulatora i nastaw zadania rozwiązaneA8 Omówi narz dzia i metody rozwi zywania zadania sterowania optymalnegoMetodyka masażu klasycznegowięcej podobnych podstron