Prawa gazowe
Równanie Clapeyrona
pV = nRT
p1V1 = nRT1 p2V2 = nRT2
$\frac{p_{1}V_{1}}{T_{1}}$ = nR $\frac{p_{2}V_{2}}{T_{2}}$ = nR
pV = $\frac{m}{M}\text{RT}$
$$\frac{\text{pM}}{\text{RT}} = \ \frac{m}{V}$$
ρ = $\frac{\text{pM}}{\text{RT}}$
Równanie van der Waalsa
$$\left( p + \ \frac{an^{2}}{V^{2}} \right)\left( V - \text{bn} \right) = nRT$$
a = $\frac{27R^{2}T_{\text{kr}}^{2}}{64p_{\text{kr}}}\ \lbrack\frac{Nm^{4}}{\text{mol}^{2}}\rbrack$
b = $\frac{RT_{\text{kr}}}{8p_{\text{kr}}}\ \lbrack\frac{m^{3}}{\text{mol}}\rbrack$
Równanie Berhelota
$$\left( p + \frac{An^{2}}{V^{2}T} \right)\left( V - \text{Bn} \right) = nRT$$
A = $\frac{27R^{2}T_{\text{kr}}^{3}}{64p_{\text{kr}}}$
B = $\frac{9RT_{\text{kr}}}{128p_{\text{kr}}}$
Błędy obliczeniowe
Błąd bezwzględny ∆p = p - pdosw.
Błąd względny = $\frac{p}{p_{dosw.}}*100\%$
Współczynnik ściśliwości i metoda iteracyjna
pV = nzRT
z = $\frac{\text{pV}}{\text{nRT}} = 1$ (dla gazu doskonałego)
$$V_{\text{mol}_{i + 1}} = \frac{\text{RT}}{p + a(\frac{1}{V_{m_{i}}})^{2}} + b$$
Termodynamika
Dla gazu jednoatomowego:
Cp =$\frac{5}{2}R$
Cv =$\frac{3}{2}R$
Dla gazu dwuatomowego:
Cp =$\frac{7}{2}R$
Cv = $\frac{5}{2}R$
Dla gazu wieloatomowego:
Cp = 4R
Cv = 3R
Cp – Cv = R
Przemiana izotermiczna (T = const)
Energia wewnętrzna
∆U = 0
Praca
W = -nRTln($\frac{V_{2}}{V_{1}})$ W = nRTln($\frac{p_{2}}{p_{1}})$
Ciepło
Q = - W
Entalpia
∆H = 0
Entropia
∆S = $\frac{Q}{T}$
∆S = nRln($\frac{V_{2}}{V_{1}})$
∆S = -nRln($\frac{p_{2}}{p_{1}})$
Przemiana izobaryczna (p = const)
Energia wewnętrzna
∆U = Q + W
Praca
Praca nieodwracalna
W = -p(V2 – V1)
Praca odwracalna
W = -nRTln($\frac{V_{2}}{V_{1}}$)
Ciepło
Q = nCp(T2-T1)
Q = $\frac{nC_{p}T_{1}}{V_{1}}*(V_{2} - V_{1})$ (gdy nie ma T2)
Q = n∆H
Entalpia
∆H = Q
Entropia
∆S = aln($\frac{T_{2}}{T_{1}}) + b*(T_{2} - T_{1})$
∆S = nCpln($\frac{T_{2}}{T_{1}})$
Przemiana izochoryczna (V = const)
Energia wewnętrzna
∆U = Cv (T2 – T1)
∆U = $\frac{nC_{v}T_{1}}{p_{1}}*(p_{2} - p_{1})$
Ciepło
Q = ∆U
Praca
W = 0
Entalpia
∆H = Cv(T2 – T1)
Entropia
∆S = Cvln($\frac{T_{2}}{T_{1}})$
Przemiana adiabatyczna
Energia wewnętrzna
∆U = nCv(T2 – T1)
Praca
W = ∆U
Ciepło
Q = 0
Entalpia
∆H = Cp(T2 – T1)
Entropia
∆S =0
Entalpia swobodna
∆G = ∆H - T∆S
Termochemia
Prawo Hessa
∆H = ∑n∆Hprod - ∑n∆sub
Stała równowagi
Stała Kp
Kp = $e^{\frac{- G}{\text{RT}}}$
Entalpia dla przemian fazowych:
∆H = ∆H - ∫T1T2Cp = ∆H – Cpln($\frac{T_{2}}{T_{1}})$
Cp dla przemian fazowych:
∆Cp = ∑nCpprod - ∑nCpsub