|
M = (2Bg+msz)Ig |
---|---|
|
$$Ar = \ M\ \left( \frac{\text{Zmax}}{2nw} \right)$$ |
|
Hr = nw * hg |
|
Hs = Hr + ho |
|
Br = (2Bg+msz)mk |
|
$$Lr = \frac{\text{Ar}}{\text{Hr}}$$ |
|
$$ng = \frac{\text{Lr}}{\text{Ig}}$$ |
|
Ls = Lr + Imp + Imt |
|
Bs = mk (2bg + msz) + 2be |
|
As = Ls * Bs |
|
Vs = As * Hs |
|
Ao = (0, 45 + 0, 55 + 0, 25) As |
|
Afp = 0, 1 (As + Ao) |
|
Apm = 0, 3 (As + Ao) |
|
Am = Ao + As + Afp + Apm |
|
Vm = As * Hs + Ao * Ho |
|
$$\propto m = \frac{\text{Am}}{\text{Zmax}}$$ |
|
$$\beta m = \frac{\text{Vmax}}{\text{Zmax}}$$ |
|
$$Swe = \frac{\text{Swe}}{\text{Ldr}}$$ |
|
Swyj = Wnj * Swe ∖ nSwyn = Wnj * Swe * kw ∖ nSwy = Swyj + Swyn |
|
$$Rd = \frac{\text{Ldr}}{\text{Rn}}$$ |
|
$${Nr = Swe*Rd\backslash n}{Zsr = \frac{\text{Swe}}{\text{Rd}}}$$ |
|
Zmax = Swe * Rd + Bzwe = Swe * Rd + 0, 5 * Swe |