Witold O.
Zbadać stabilność układu zakmniętego
$$G_{1}(s) = \frac{3}{s + 1}\text{\ \ \ \ \ \ \ }G_{2}(s) = \frac{2}{s + 1}\text{\ \ \ \ \ \ \ \ \ \ \ }G_{3}(s) = \frac{2}{s + 3}\text{\ \ \ \ \ \ \ \ \ }G_{4}(s) = \frac{3}{s}$$
$$G_{z}(s) = \frac{\frac{G_{1}(s)}{1 + G_{1}(s)}*\left( G_{2}(s) + \frac{G_{3}(s)}{G_{1}(s)} \right)}{1 + \left\lbrack \frac{G_{1}(s)}{1 + G_{1}(s)}*\left( G_{2}(s) + \frac{G_{3}(s)}{G_{1}(s)} \right) \right\rbrack*G_{4}(s)}$$
$$G_{z}(s) = \frac{\frac{\frac{3}{s + 1}}{1 + \frac{3}{s + 1}}*(\frac{2}{s + 1} + \frac{\frac{2}{s + 2}}{\frac{3}{s + 1}})}{1 + \left\lbrack \frac{\frac{3}{s + 1}}{1 + \frac{3}{s + 1}}*(\frac{2}{s + 1} + \frac{\frac{2}{s + 2}}{\frac{3}{s + 1}}) \right\rbrack*\frac{3}{s}} = \frac{\frac{\frac{3}{s + 1}}{\frac{s + 4}{s + 1}}*(\frac{2}{s + 1} + \frac{2(s + 1)}{3(s + 2)})}{1 + \frac{\frac{3}{s + 1}}{\frac{s + 4}{s + 1}}*(\frac{2}{s + 1} + \frac{2(s + 1)}{3(s + 2)})*\frac{3}{s}} = \frac{\frac{3}{s + 4}*\frac{6\left( ss + 3 \right) + 2({s + 1)}^{2}\text{\ \ }s(}{3\left( s + 1 \right)*(s + 3)}}{1 + \frac{3}{s + 4}*\frac{6\left( ss + 3 \right) + 2({s + 1)}^{2}\text{\ \ }s(}{3\left( s + 1 \right)*(s + 3)}*\frac{3}{s}} = \frac{\frac{6\left( ss + 3 \right) + 2({s + 1)}^{2}\text{\ \ }s(}{\left( s + 1 \right)*\left( s + 3 \right)*(s + 4)}}{1 + \frac{18\left( ss + 3 \right) + 6({s + 1)}^{2}\text{\ \ }s(}{s*\left( s + 1 \right)*\left( s + 3 \right)*(s + 4)}} = \frac{\frac{6\left( ss + 3 \right) + 2({s + 1)}^{2}\text{\ \ }s(}{\left( s + 1 \right)*\left( s + 3 \right)*(s + 4)}}{\frac{s^{4} + 8s^{3} + 25s^{2} + 42s + 60}{s*\left( s + 1 \right)*\left( s + 4 \right)*(s + 3)}} = \frac{6s\left( ss + 3 \right) + 2s({s + 1)}^{2}\ }{s^{4} + 8s^{3} + 25s^{2} + 42s + 60}\ $$
Badamy stabilność układu
$$G_{z}\left( s \right) = \frac{L\left( s \right)}{M(s)} = \frac{L(s)}{s^{4} + 8s^{3} + 25s^{2} + 42s + 60}$$
M(s) = s4 + 8s3 + 25s2 + 42s + 60
2. Wszystkie wyznaczniki Δi muszą być większe od zera aby układ był stabilny
42 | 60 | 0 |
---|---|---|
8 | 25 | 42 |
0 | 1 | 8 |
Δ1=a1=42
Δ2=
a1 | a0 |
---|---|
a3 | a4 |
42 | 60 |
---|---|
8 | 25 |
Δ2= 570
Δ3=
42 | 60 | 0 |
---|---|---|
8 | 25 | 42 |
0 | 1 | 8 |
Δ3=2796
Δi >0 zatem układ jest stabilny
Zbadać własności dynamiczne układu nieliniowego przedstawionego na rys.
$${x\left( t \right) = Asin\omega t\backslash n}{B = 1\ \ \ \ \ \ \ \ \ \ G\left( s \right) = \frac{s}{s^{3} + 4s^{2} + 2s + 1}\backslash n}{I = \frac{4B}{\text{πA}}\backslash n}{k\left( s \right) = G\left( s \right)*I\left( A \right)\backslash n}{G_{z} = \frac{I\left( A \right)G\left( s \right)}{1 + I\left( A \right)G\left( s \right)}\backslash n}$$