10.06.2014
Zad 1 - brak
Zad 2
G = (1/Ts) / (1+ 1/(2Ts)) = 2 / (2Ts + 1) = 2/1 = 2
Zatem układ jest członem proporcjonalnym o wzmocnieniu równym 2.
Zad 3
Po lewej odpowiedź skokowa różniczkującego rzeczywsitego, po prawej członu całkującego rzeczywistego. Podstawową różnicą jest, że przebieg po lewej stronie jest nieciągły (w zerowym czasie nagle jest już duża wartość), a po prawej jest ciągły, ale dąży do neiskończoności.
Zad 4 - brak
Zad 5
Bodego:
Zapas modułu λ [dB] - 20*log(Kappa), gdzie Kappa to krotność, ile razy miałaby wzrosnąć wzmocnienie przy niezmiennym argumencie układu otwartego, aby układ zamknięty znalazł się na granicy stabilności.
Zapas fazy ΔҨ [°] – Wartość kąta, jaki można dodać do fazy (przy promieniu = 1 na wykresie Nyquista), aby nowa faza była równa 180 stopni. Doprowadzi to do granicy stabilności układu.
Nyquista:
Na zielono zaznaczyłem zapas wzmocnienia Kappa. Czyli ile razy możemy zwiększyć wzmocnienie, aby osiągnąć punkt (-1, j0). Zapas modułu obliczymy według wzoru lambda = 20log(kappa). Jeśli chodzi o zapas fazy: Szukamy pulsacji w, dla której moduł będzie równy 1 (na rysunku co prawda nie jest to dokładnie 1, ale zrobiłem tak ze względów estetycznych, żeby było lepiej widać). Następnie badamy, jaki kąt jeszcze moglibyśmy dodać do fazy aktualnej, żeby faza była równa -180 stopni (Czyli skoro ma mieć fazę -180 stopni i moduł 1, to wtedy jest ten mityczny punkt (-1, j0) hehe).
Zad 6
Stała różniczkowania Td odpowiada za tor różniczkowania w regulatorze. Im jest ona większa, tym większe jest działania tego toru. Im większe Td, tym czas regulacji jest mniejszy (niweluje oscylacje, nie tracąc przy tym dynamiki). Jednak gdy przesadzimy z doborem Td, pojawią się nowe oscylacje, o pulsacji większej, niż dotychczasowe.
Zad 7
Układ astatyczny ma w swojej transmitancji operatorowej co najmniej jednokrotny biegun zerowy (czyli po prostu „s” w mianowniku transmitancji). Astatyzm zapewnia zerowy uchyb ustalony Dwa razy użyłeś słowa astatyzm?
Zad 8
Możesz dokończyć zadanie ??