Logika i zbiory, Przygotowanie do klasówki, Klasa 1


Imię i nazwisko……………………………………………… klasa I …

Praca klasowa nr 2 - Logika i zbiory. Wersja A

1. (4+4+2p.) Niech dane będą zbiory A i B. Wyznacz sumę, iloczyn i obie różnice.

Przedziały A i B (w punkcie b) zaznacz na jednej osi liczbowej.

0x08 graphic
a) 0x01 graphic
b) 0x01 graphic

0x01 graphic
0x01 graphic

suma: ………………… suma: …………………

iloczyn: ……………… iloczyn: ………………

różnica: ……………… różnica: ………………

różnica: ……………… różnica: ………………

2. (2p.) Zaznacz na rysunku zbiór:

a) 0x01 graphic
0x08 graphic
0x01 graphic
b)0x01 graphic
0x08 graphic
0x01 graphic

3. (2+2+2p.) Rozwiąż i podaj zbiór rozwiązań nierówności:

a) 0x01 graphic
b)0x01 graphic
; c) 0x01 graphic
.

4. (1+1+1+2p.) Podaj zbiór rozwiązań i nierówności z wartością bezwzględną.

a)0x01 graphic
b)0x01 graphic
c) 0x01 graphic
d) 0x01 graphic

5. (1+1+1p.) Wyznacz wszystkie liczby rzeczywiste 0x01 graphic
, takie że: 0x01 graphic
.

6. (1p.) Która nierówność opisuje przedział 0x01 graphic
?.

A. 0x01 graphic
; B. 0x01 graphic
; C. 0x01 graphic
; D. 0x01 graphic
.

7. (1p.) Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej.

0x08 graphic
0x01 graphic

A. 0x01 graphic
; B. 0x01 graphic
; C. 0x01 graphic
; D. 0x01 graphic
.

8. (1p.) Wskaż przedział, który jest zbiorem rozwiązań nierówności 0x01 graphic
.

A. 0x01 graphic
; B. 0x01 graphic
; C. 0x01 graphic
; D. 0x01 graphic
.

9. (1p.) Do zbioru 0x01 graphic
należy liczba:

A. 0x01 graphic
; B. 0x01 graphic
; C. 1; D. -1.

10. (*) Sprawdź, czy następujące wyrażenie jest tautologią: 0x01 graphic
.

Imię i nazwisko……………………………………………… klasa I …

Praca klasowa nr 2 - Logika i zbiory. Wersja B

1. (4+4+2p.) Niech dane będą zbiory A i B. Wyznacz sumę, iloczyn i obie różnice.

Przedziały A i B (w punkcie b) zaznacz na jednej osi liczbowej.

0x08 graphic
a) 0x01 graphic
b) 0x01 graphic

0x01 graphic
0x01 graphic

suma: ………………… suma: …………………

iloczyn: ……………… iloczyn: ………………

różnica: ……………… różnica: ………………

różnica: ……………… różnica: ………………

2. (2p.) Zaznacz na rysunku zbiór:

a) 0x01 graphic
0x08 graphic
0x01 graphic
b) 0x01 graphic
0x08 graphic
0x01 graphic

3. (2+2+2p.) Rozwiąż i podaj zbiór rozwiązań nierówności:

a) 0x01 graphic
b) 0x01 graphic
; c) 0x01 graphic
.

4. (1+1+1+2p.) Podaj zbiór rozwiązań i nierówności z wartością bezwzględną.

a)0x01 graphic
b)0x01 graphic
c) 0x01 graphic
d) 0x01 graphic

5. (1+1+1p.) Wyznacz wszystkie liczby rzeczywiste 0x01 graphic
, takie że: 0x01 graphic
.

6. (1p.) Która nierówność opisuje przedział 0x01 graphic
?

A. 0x01 graphic
; B. 0x01 graphic
; C. 0x01 graphic
; D. 0x01 graphic
.

7. (1p.) Zbiorem rozwiązań nierówności 0x01 graphic
jest przedział

A. 0x01 graphic
; B. 0x01 graphic
; C. 0x01 graphic
; D. 0x01 graphic
.

8. (1p.) Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej.

0x08 graphic
0x01 graphic

A. 0x01 graphic
B. 0x01 graphic
C. 0x01 graphic
D. 0x01 graphic

9. (1p.) Do zbioru 0x01 graphic
należy liczba:

A. 0x01 graphic
; B. 1; C. 0x01 graphic
; D. -1.

10. (*) Sprawdź, czy następujące wyrażenie jest tautologią:0x01 graphic
.

A

B

C

x

1

-5

A

B

C

-5

1

x

C

B

A

C

B

A



Wyszukiwarka

Podobne podstrony:
Liczby i działania, Przygotowanie do klasówki, Klasa 1
Wyrażenia wymierne, Przygotowanie do klasówki, Klasa 3
geometria analityczna, Przygotowanie do klasówki, Klasa 2
Trygonometria, Przygotowanie do klasówki, Klasa 2
Wielomiany, Przygotowanie do klasówki, Klasa 2
ciągi - praca klasowa, Przygotowanie do klasówki, Klasa 2
Prawdopodobieństwo, Przygotowanie do klasówki, Klasa 3
funkcja wykładnicza i logarytmiczna, Przygotowanie do klasówki, Klasa 2
Równania i nierówności, Przygotowanie do klasówki, Klasa 1
geometria, Przygotowanie do klasówki, Klasa 1
Figury podobne, Przygotowanie do klasówki, Klasa 2
dodatki, przygotowanie do klasowki, Zdawanie egzaminów to niełatwa sprawa - o czym doskonale wiesz
przygotowanie do sprawdzianu z wosu klasa 1
PRZYGOTOWANIE DO SPRAWDZIANU - FUNKCJA LINIOWA - POZIOM ROZSZERZONY 2013 2014, Sprawdziany, p
PRZYGOTOWANIE DO SPRAWDZIANU - POLE TROJKATA KOLA - poziom rozszerzony 2012 2013, Sprawdziany,
Geometria analityczna - zadania przygotowawcze do pracy klasowej (2), instrukcje, budownictwo, Geome
PRZYGOTOWANIE DO SPRAWDZIANU - WIELOMIANY - poziom rozszerzony 2013 2014, Sprawdziany, powtór
PRZYGOTOWANIE DO SPRAWDZIANU - FUNKCJA KWADRATOWA I - poziom rozszerzony 2013 2014, Sprawdziany,

więcej podobnych podstron