Zadania 151
Zadania 151
m
f(x) = f{x) = f(x) = f(x) = f(x) = f(x) f(x) f(x) f(x) f(x) f{x) f[x)
■ f x)
•l-z)
■ f z) •f'X =
f - —
_ 3z100+4z2+l
J55T
4zn+7z13+l 3z7 '
l+£
1— X '
1-Z100 1+Zllł0 *
1 —Z+Z2
1+z+z2 '
2 ^/z+ ^Z+4y/l
VI2
_ 7 ^Z+Z+TT y2!4!- y2!3
5\/z+3 \/x+4 s/x
- W '
= ^2 (l + 2v^).
= X^+-^.
= x^(x100 + ±).
= (x2 + X + l)17.
= (x + 2sinx)15. (x2 + l)2003.
(l+2z"\5 \l+3xJ '
Vxż (2x + 3v^).
tg (3ex2 - x).
: ln(x2 + 5).
: logx sin x.
: log(z2+l) X-
: = i x-
- x +1)
2003
IHBT
- VI + tgx.
6.38. /(x) =
6.39. /(x) =
6.40. /(x) =
6.41. f(x) =
6.42. /(x) =
6.43. f (x) =
6.44. /(x) =
6.45. /(x) =
6.46. /(*) =
6.47. f(x) =
6.48. f(x) =
6.49. /(x) =
6.50. f (x) =
6.51. f (x) =
6.52. f (x) =
6.53. f(x) =
6.54. /(x) =
6.56. f(x)
6.57. f(x)
6.60. f(x)
\/sin2x + 1. x arcsinx. x5 arc tgx. sinx arcctg x.
O-r •
arcsinx. ln(3x) sin 5x. ex2 ln x.
= cos2 x arc tg x.
= arctg2xlnx.
= ln(x2 + 1) sinx.
= arc cos (x2 — 1) tg (2x). = ctg3xln(x4 + x2 + 1).
_ 1—sin z
— 1+sinz'
— 1—s2+z4
— l+z2+z4'
_ 1+arc tg z
— 1—arc tg z'
_
l+ctg2z'
_ 1+arc tg (3z)
— 1+arc ctg (3z)'
_ z+arcsin2z
z—arc sin‘‘z ’
_ l+e2x
— i—e2x -
_ sin2z
eix
_ x—9x
— x+9x '
_ ln z+sin2 z lnz—sin2 z'
= sin2 3x.
= cos3 2x.