W Cijtiyfuki - ELEKTRONIKA W ZADANIACH Część 3 Analiza malosygnalown układów półprzewodnikowych
wartościach. Wtedy jednak dla składowej zmiennej mała rezystancja bocznikuje uzyskaną wartość rezystancji równą hue + (\ + hzie) Re > w znacznym stopniu niweczy efekt działania ujemnego szeregowego sprzężenia zwrotnego. Wyjściem z. tej sytuacji jest przyjęcie struktury z. dodatkowym rezystorem R< jak na tematowym rysunku 3.19.1. Porównując wyniki dla wtórników z zadań 3.18 i 3.19 widzimy, że uzyskaliśmy podobne wartości rezystancji wejściowej, przy czym jednak w ostatnim układzie na schemacie do analizy zmian temperaturowych w obwodzie bazy występuje rezystancja zastępcza o wartości tylko Ra - R< + Ri || R; = 50 kfi.
Ad 3. Obciążenie Rl jest podłączane równolegle do rezystancji emiterowej RE wtórnika, czyli jego wpływ może znaleźć odbicie w' powyższych zależnościach przez podstawienie w miejsce Rz wartości Ry = Rz II Rezystancję wyjściową wtórnika obliczymy jako równą tej wartości rezystancji obciążenia RL, przy której wzmocnienie napięciowe zmniejsza się o połowę. Z poprzednich zadań wiemy, że rezystancja ta jest o dwa rzędy mniejsza niż RE i dlatego przyjmiemy dla prostoty, żc Rz = Rz II Rl ~ Rt.- Na podstawie zależności (3.19.3) i (3.19.5) możemy wtedy napisać:
(3.19.11)
(3.19.12)
ł.ącząc dwa ostatnie równania otrzymujemy:
Hf WY
Rl+u„
(3.19.13)
R)+ w
+ Kl
Po przekształceniach:
V lh t h~ I
—(I +^±Rl)=^-Rl+-
^3 ■ K !<•
(3.19.14)
^3 + ^ilr
(3.19.15)
- = 0,495
Podstawiając wzmocnienie równe połowic wartości dla wtórnika nieobciążonego: _ k„ = 0.989 2
oraz inne dane liczbowe otrzymujemy równanie kwadratowe:
(3.19.16)
0,495 (1 + — R,) = — Rl +-^-
1 kfi L 1 kfi L 0.976 kQ + RL
które ma jedno rozwiązanie dodatnie o wartości Rl = 9,90 fi.
Rozwiązanie 2
Do analizy omawianego układu może być także zastosowana metoda macierzy admitancyjnej, pod warunkiem wcześniejszego przeliczenia wartości podanych parametrów hybrydowych />, na parametry admitancyjnc y i określenia macierzy admitancyjnej tranzystora dla konfiguracji WK. Przeliczenia takiego dla przykładowych podanych w temacie wartości dokonano już w poprzednich zadaniach, więc możemy wykorzystać znane już wartości parametrów admitancyjnych tranzystora:
W Ciązynsta - ELEKTRONIKA W ZADANIACH Część 3 Analiza malosyynałowa układów półprzewodnikowych
yu= ImS yn = 0 mS
y21 = 100 mS y-n = 0 mS
Dla tych wartości należy utworzyć pełną macierz admitancyjną tranzystora oraz skreślić w niej wiersz i kolumnę odpowiadającą kolektorowi. Przeliczamy też wartości rezystancji w układzie na odpowiadające im admitancje:
Y} = lIR} =1/(40 kfi) = 0,025 mS;
Yz= l/Rz =1/(0.909 kiż) = 1,100 mS;
Schematu zastępczy analizowanego układu dla składowej zmiennej (pokazany poprzednio na rysunku 3.19.2) w wersji admitancyjnej przedstawia rysunek 3.19.4. Schemat ten zawiera tylko 2 węzły, którym przydzielono oznaczenia: © dla wejścia (wyprowadzenia bazy) i ® dla wyjścia (wyprowadzenia emitera).
Macierz układu posiadającą dwa wiersze i dwie kolumny pokazano na rysunku 3.19.5, ajej postać liczbową na rysunku 3.19.6.
© (B)
® (E)
© (B)_© (E)
© (B) @(E)
K? + VII |
-Yj-yu |
- K) - yn - V2i |
Ys + Yz + yn + yu |
Rys. 3.19.5 Macierz admitancyjna układu wzmacniacza z rysunku 3.19.4 (a więc i z rysunku 3.19.1)
© (B)_® (E)
1,025 |
- 1,025 |
- 101,025 |
102,125 |
Rys. 3.19.6 Postać liczbowa macierzy admitancyjnej układu wzmacniacza z rysunku 3.19.4 (wartości admitancji wyrażone w mS)
Ad 1. Układ pracuje bez obciążenia zewnętrznego. Obliczamy wzmocnienie napięciowe ku układu ze wzoru Nr 2 podanego w tabeli W3.7:
(— l)'^2 (—101,025) mS 102.125 mS
= 0.989
(3.19.17)
Ad 2. Rezystancję wejściową dla sygnału um obliczamy ze wzoru Nr 6 w tabeli W3.7 w którym podstawiamy wartość wyznacznika macierzy jako:
A = [1,025 • 102,125 - (-1,025) • (-10 l,025)](mS)2 = 1.1275 (mS)2 (3.19.18)
Otrzymujemy zatem wartość Rn
/?,.=-
102,125 mS
A 1,1275 (mS)2
= 90,6 kQ
(3.19.19)
Ad 3. Rezystancję wyjściową obliczamy przy wykorzystaniu wzoru Nr 8 z tabeli W3.7, uwzględniając rezystancję wewnętrzną źródła sygnału wejściowego «», równą zeru (podwyznacznik Au, 22 macierzy, z której skreślono obydwa wiersze i obie kolumny ma z definicji wartość 1):
_ ^1^22 +A||.22 A11.22 _
R; A + A,
A,, 102,125 mS
=9,79 n
(3.19.20)
Niewielkie różnice otrzymanych wartości liczbowych w stosunku do wartości z rozwiązania 1. wynikają ze stosowanych tam zaokrągleń wyników pośrednich.
- 105-