Jeżeli h{x) — f(x) + g{x), to h'(x) = f(x) + g'(x)
Jeżeli h(x) = f(x) * g(x), to h!{x) = f{x) * g(x) + f(x) * g'(x) Jeżeli h(x) = to h'(x) =
Jeżeli h(x) = f(g(x)), to h'(x) = fł(g(x)) * g'(x)
dla x>0,aGl
(tgx)’ = (ctgx)' (arcsino:)7 = (arccoso:)7 — (arctan o:)7 = (arcctgx)' =
cosz x -1
sin2 x
= 1 -f tg2x cos = —(1 + ctg2x) sina;^0
x*
1 + X2
(ex)' = ex (ax)' = ax ln a 1
1 1
— 1 < a: < 1, -7r < arcsma: < -7r
“ “ 2 ” ~ 2
— 1< a: < 1.0 < arccos x < ir
--7T < arctanx < -n
0 < arcctgx < tt
a > 0 x > 0
1
a: ln a
(1) f(x) — |o:3 — |x4 + yo:5 — 2o:6
(2) f(x) = 9x7 + 3o:~5 — 3o:_il
(3) f(x) = yG?
(4) /(*) = -w -+1^
(5) f(x) = (3z - 2)(z2 - 1)
(6) f (x) = (Vi-l)(l - 4)
(8) f(x) =
(11) f(x) =
? (12) f(x) = (Zx - l)7 + x~3