RACHUNEK PRAWDOPODOBIEŃSTWA J STATYSTYKA Egzamin - Mechanika/lnżynieria Produkcji - 9.02.200o
1- (5 pkt) Zmienna losowa X ma rozkład prawdopodobieństwa, postaci: / (A = 2) — Tl,
P(X "m -1) « 0.3, P(A' = 0) = 0.1, P(A = 2) = 0.4, P(A = 3) = 0.1.
Oblicz a) dys tryb u antę zmiennej losowej A, b) wariancję A , c) medianę A , d) kwanty! rzędu 0.24 zmiennej losowej X, e) modę.
2. (.r> pkt ) Wiadomo,że wyniki pomiarów długości czarodziejskiej różdżki maja rozkład normalny o wariancji a2 = 10. Wykonano 26 pomiarów czarodziejskiej różdżki i otrzymano średnia z próby x — 20 cm. Znaleźć przedział ufności dla wartości oczekiwanej pomiaru długości czarodziejskiej różdżki na poziomie ufności 1 — a = 0.9.
3. (5 pkt) Zbadano efektywny czas przygotowania, do pewnego egzaminu 10 studentów uczelni •d i 12 studentów uczelni B. Dla. studentów uczelni A otrzymano średni czas =10 minut oraz wariancję z próby P2 = 1 a dla studentów uczelni B średni czas x2 = 12 minut oraz wariancję z próby s2 = 4. Czy na poziomie istotności a = 0.01 można twierdzić, że studenci uczelni A przygotowuję się krócej do tego egzaminu niż studenci uczelni £?• Z akię damy, że czas przygotowania losowo wybranego studenta ma rozkład normalny.
4. (za każdą prawidłowy odpowiedź: + 1 pkt, za każdą złą odpowiedź: -1 pkt, za brak odpowiedzi: 0 pkt) Cz\' poniższe zdanie jest prawdziwe:
j (a) Przy jednokrotnym rzucie kostkę prawdopodobieństwo, że wypadnie szóstka pod warunkiem, że wypadła jedynka jest równe zero.
+~fW Jeżeli P(A) = 1 — P(B), to zdarzenia A i B sę niezależne.
(c) W wyniku doświadczenia losowego zachodzi dokładnie jedno zdarzenie, elementarne.
(d) Jeśli P{A) = 0.2, P(B) = 0.4 oraz P(A U 0.6, to
^fe) Funkcja gęstości prawdopodobieństwa nie może osiągać wartości większych niż 1.
* m Zmienna losowa nie rnoże przyjęć wartości 0.
Af(g) Dystrybuanta zmiennej losowej jest funkcję nierosnęcę. ? A(h) .Jeżeli P(X — 0) = 1, to A ma medianę równą 1.
+•
I (i) Odchylenie standardowe może być równe zero.
V 10) Wartość oczekiwana zmiennej losowej może hyc liczbą ujemną, (k) Jeżeli D2(X) = 2, to D2(-2X + 1) = 9.
(m) Wariancja zmiennej losowej o rozkładzie B( 10,0.5) wynosi 0.25.
Å‚.C.