Biblioteczka Opracowań Matematycznych
jVl-4 x2dx= j^4^^-x2'jdx = 2jJj-x2<& = jarcsm2x + xJ~x2 +C
116/ _
JV,0-+3x-x1dx= <*= * _2~' = fJj-t!dr=jarcsinj + ^j-r2+C
49 . 2x-3 2 FIT* ń 7,
= —arcsin--1--— \1\0 +3x - x + C
8 7 2
— JV3*J+10x+9dx= +|&= JJ3 [*Ą] Ą
dx=
x+- +-dx=
5 |
r |
.v + - = t 3 dx = dt |
-*lł |
3x + 5 + yj3(3x2+\0x + 9)\ + C
3jr +10x + 9
+c =
+ c = h±lylix2 + \0x + 9 + 6
V3,
+ — In 9
118/ r5x2 -2x+ 10
f5x--2.x+‘Urfr = (ax + ^_5.r + 8 + f ^ -
W3x2-5x + 8 JV 3xJ-5x+8
Różniczkujemy obustronnie:
5x2-2x + 10 rr~2 7 o r . Ł\ 6x-5 .4
, = av3x -5x + 8 + (ax + />)—■ — + . ,
V3x2 -5x + 8 2V3x2-5x + 8 V3x--5x + 8
Obustronnie mnożymy przez ^3X2 - 5X + 8 5x2 -2x +10 = a(3x2 -5x + 8)+(ax+ />)***?— + /t Stąd układ równań:
a = -
10 = 12a
- 4 = -10a - 5o + 66 20 = 16a - 56 + 2.4
Wstawiamy do wyjściowego wzoru:
6 =
/} =
6
17
12
165
5x + 8
55V3 ,
i
24
ln/ +
V 36
^ 55^3,
+ C =-In
24
6x-5
3x2-5x + 8
5x + 8 +
55^3
24
ln
3x-- + V3V3x3-5x + 8 2
119/
+ C
x2 + 2x + 2
, = = (2ax + 6)\/x3 + 2x + 2 + (ar2 + 6x + c)—*•(* + O = +
Vx2+ 2x+2 V 2Vx3+2x+2 /
x’ -x +1 = (2ar + 6)(-x: + 2x + 2)+ (av2 + 6x + c)(x +1)+ /i x3 — x +1 = x3(3tf)+x:(5a + 26)+x(4a + 36 + c)+(26-t-c + .)
x-x + l
3 + 2x + 2
3a = 1 5a + 26 = O 4a + 36 + c = -I 26 + c + -4 = 1
1
a = — 3
6 = — 6 I
c = — 6
6
, O 2 5 \) n~z—- 15 f *
U 6 6 J 6 \lx2 + 2x+2
2 JVx3+2x + 2 2 + +
x + l = /
dt
= 1 f ■ ^ = l|n|x +1| + \ 2J7^Tl 2 1 1
x2 + 2x + 2 + C
/ = ^l-x2-lx + lj>/xJ + 2x + 2 + |ln|x + l + >/xI + 2x + 2| + C
-37-