Biblioteczka Opracowań Matematycznych
54/ ^exs\nxdx =
u =ex du = exdx dv = sin v = -cosx
—~e cosx+
u=ex du-exd\ dv=cosdx v=sinx
= -e' cosx+ je1 cosxdx = =-e,cosjr+e'sin.t- je‘s\nxdx
A zatem biorąc pod uwagę początek i koniec obliczeń mamy: jex sin xdx = -ex cos x + ex sin x - jex sin xdx
jex sin xdx = ■
55/
je~lx sin 3xdx =
u = e
du = -2 e dx
dv = sin 3xdx v =
- cos 3.t
-e'Jxcos3x 2 f ,,
-1--—Je " cos3xdx
- e 2x cos 3x 2
u - e 2x du = -2e~2xdx , _ . sin 3x
dv = cos 3 xdx v = -
- e 2x cos 3.v
l(e2xsin3x 2 r u . - .'i -e'2xcos3x 2elxsin3x 4 r ,, .
-- ---+- e -xsin3*dEr =---------e'2xsin3.r^v
3^ 3 3J J 3 9 9 J
Stąd: ^-Je'j,sin 3xdx =
cos 3 x 2 e 2 * sin 3 jr
je ~lx sin 3xdx
3 9
-3e“2xcos 3x 2e~Jxsin 3.t
13
13
[sin2-<Zx= J 3
X |
dx — -dt |
«=sin/ |
du = costdi | |
3~‘ dx-3dt |
3 |
=3 Jsm fcń=3 Jsinr sin/rff = |
dv=sintdt |
v=-cos/ |
= -3sin / cosr + 3 Jcos2/c// = -3sinfcos/ + 3 j(l — sin2/)* = -3sinłcos/ + 3 j*A-3 jsin2tó!r 3 Jsin 2tdt = -3 sin t cos t + 3t - 3 Jsin 2tdt
r . i.,. -3sin/cos/ |
3/ r |
— sin cos . j x 3 3 x >in — =---—+ — | ||
J31II iUi — |
6 |
-- J 6 |
3 |
2 6 |
57/ fcos 3 = — j 4 |
X 4 " ' dx = 4 dt |
= 4Jcos2 idi = |
U = cos / dv = cos tdt |
du = - sin tdt v = sin / |
4(cos/sin/ + Jsin2/cfr)= 4cos/sin/ + 4 J(1 -cos't)di = 4cos/sin/ + 4 fdr - 4 jcołtdt 8 Jcos 2 tdt = At + 4 cos t sin t
x . x cos —sin 1 4_4
+ C
r 2 . i cos łsin t _
cos ' tdt = —+-+ C - —
J 2 2
u = ln x du = — x
i 2 -
dv = x2dx v = —x2
3 3 x
= yx^ln|x|~x^ + C
u = ln Lv =
dx
= x ln I jc
x In U - x + C
dv = dx
v = x
fdx =2
| ln |x| In |x|dr = |
u = In |x | du - X |
dv = ln |x |dx v = x ln |x | — x |
= In |jt|(.v ln |x| - ar)- JIn |jr(cat»r + Jdx = x ln 2|x|- 2x In |x| + 2x + C
I
u = ln ‘ 1x1 du
2 ln |x|<ćr
dv = x dx
x
- 1 4x4
(H*!)' , i flnijltżr
4x4 2 J xs
u = ln |x I =
dv = x‘dx v =
x
- 1 4x4
- 17-