Elementy
analizy
funkcjonalnej
Spis treści
Rozdział 1. Pojęcia wstępne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Przestrzenie metryczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Przestrzenie liniowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Liniowa niezależność wektorów, baza i wymiar przestrzeni liniowej . . . . . . . . . . . . . . . . 3
Rozdział 2. Przestrzenie liniowe metryczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Przestrzenie liniowe unormowane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Zbieżność ciągu punktów przestrzeni metrycznej . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Przestrzeń Banacha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Rozdział 3. Przestrzenie unitarne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Sprawdzenie spełnialności aksjomatów normy przez normę wyznaczoną przez iloczyn skalarny 8
3.1. Ortogonalność w przestrzeni unitarnej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Zbiory otwarte i domknięte w przestrzeniach metrycznych . . . . . . . . . . . . . . . . . . . . 9
3.3. Baza ortonormalna przestrzeni unitarnej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Rozdział 4. Operatory i funkcjonały liniowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1. Działania na operatorach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2. Przykłady operatorów liniowych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3. Złożenie operatorów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4. Teoria równania liniowego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5. Widmo operatora liniowego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6. Operatory samosprzężone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Dodatek A. Pytania na egzamin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Dodatek B. Oznaczenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Rozdział 1
Pojęcia wstępne
1.1. Przestrzenie metryczne
Niech X zbiór dowolny
Definicja 1.1. Metryką nazywamy funkcję d : X X R+ *" {0} spełniającą warunki
m1) d(x, y) = 0 !! x = y dla każdego x, y " X
m2) d(x, y) = d(y, x) dla każdego x, y " X
m3) d(x, z) d(x, y) + d(y, z) dla każdego x, y, z " X (Aksjomat trójkąta)
d(x, y) uogólniona odległość x od y
Definicja 1.2. Przestrzenią metryczną nazywamy strukturę (X, d), gdzie X jest niepustym zbiorem,
a d jest metryką określoną na zbiorze X
Przykłady przestrzeni metrycznych
1) (R, | |)
d(x, y) = |x - y|
m1) d(x, y) = 0 ! |x - y| = 0 ! x - y = 0 ! x = y
x,y"R
m2) d(x, y) = |x - y| = |-1| |x - y| = |(-1)(x - y)| = |y - x| = d(y, x)
x,y"R
m3) d(x, y) = |x - z| = |(x - y) + (y - z)| |x - y| + |y - z| = d(x, y) + d(y, z)
x,y,z"R
|a + b| |a| + |b|
Rys. 1.1: Punkty w przestrzeni R2
2) (R2, d) x = (x1, x2) y = (y1, y2)
d(x, y) = (x1 - y1)2 + (x2 - y2)2
metryka pitagorejska
3) (R2, dm)
d(x, y) = |x1 - y1| + |x2 - y2|
metryka manhattańska
4) (R2, dmax)
dmax(x, y) = max{|x1 - y1| , |x2 - y2|}
metryka maximum
1.2. PRZESTRZENIE LINIOWE 2
5) (Rn, d) x = (x1, . . . , xn) y = (y1, . . . , yn)
n
d(x, y) = (xi - yi)2
i=1
uogólniona metryka pitagorejska
n n
m1) d(x, y) = 0 ! (xi - yi)2 = 0 ! (xi - yi)2 = 0 ! (xi - yi)2 = 0 ! xi - yi =
i=1 i=1 i i
0 ! xi = yi ! x = y
i
n n n
m2) d(x, y) = (xi - yi)2 = [(-1)(yi - xi)]2 = (-1)2(yi - xi)2 =
i=1 i=1 i=1
n
= (yi - xi)2 = d(y, x)
i=1
m3) Ponieważ d(x, y) 0 to wystarczy pokazać, że
x,y
[d(x, y) + d(y, z)]2 [d(x, z)]2
n n n
[d(x, z)]2 = (xi - zi)2 = [(xi - yi) + (yi - zi)]2 = [(xi - yi)2 + 2(xi - yi)(yi - zi) +
i=1 i=1 i=1
n n
n
+ (yi - zi)2] = (xi - yi)2 +2 (xi - yi)(yi - zi) + (yi - zi)2
i=1
i=1 i=1
[d(x,y)]2 [d(y,z)]2
2
n n n
2
Z nierówności Schwarza Cauchy ego, która mówi, że: uivi u2 vi
i
i=1 i=1 i=1
n n n
2
a w szczególności uivi u2 vi mamy:
i
i=1 i=1 i=1
n n n
(xi - yi)(yi - zi) (xi - yi)2 (yi - zi)2
i=1 i=1 i=1
Zatem:
[d(x, y)]2 [d(x, y)]2 + 2[d(x, y)d(y, z)] + [d(y, z)]2 = [d(x, y) + d(y, z)]2
6) {0, 1}n = (b1, . . . , bn) : bi " {0, 1}
{i
d(x, y) = : xi = yi}
x,y"X
x=(x1,...,xn) xi"{0,1}
y=(y1,...,yn) yi"{0,1}
=liczba pozycji na których x i y się różnią=liczba jedynek (waga) w ciągu x ą y
odległość Haminga
1.2. Przestrzenie liniowe
Definicja 1.3. Przestrzenią liniową (wektorową) nad zbiorem K (K = R lub K = C) nazywamy
dowolny zbiór X, w którym określone są działania:
(x, y) x + y " X
x,y"X
(, x) x " X
"K x,y"X
spełniające następujące aksjomaty przestrzeni liniowej:
A1) x + y = y + x
x,y"X
Grzegorz Jastrzębski
1.3. LINIOWA NIEZALEŻNOŚĆ WEKTORÓW, BAZA I WYMIAR PRZESTRZENI LINIOWEJ 3
A2) (x + y) + z = x + (y + z)
x,y,z"X
A3) x + 0 = x
x"X
0"X
A4) x + (-x) = 0
x"X -x"X
A5) (x + y) = x + y
"K x,y"X
A6) ( + )x = x + x
,"K x"X
A7) (x) = ()x
,"K x"X
A8) 1 x = x
x"X
Przykłady:
1) X = R nad K = R
x, y
[x, y]
2) X = C nad K = R
2 ) X = R2 nad K = R a" 2)
3) X = Rn nad K = R
x = (x1, . . . , xn) y = (y1, . . . , yn) " K
def
=
x + y (x1 + y1, . . . xn + yn)
def
=
x (x1, . . . , xn)
4) X zbiór wszystkich macierzy wymiaru m n nad K = R
A = [aij]mn B = [bij]mn
def
=
A + B [aij + bij]
A+B"X
A = [aij]
"R A"X
5) X = C( a, b ) zbiór wszystkich funkcji ciągłych na przedziale a, b
def
=
(f + g)(t) f(t) + g(t)
f,g"X t" a,b
def
=
(f)(t) f(t)
"R f"X
1.3. Liniowa niezależność wektorów, baza i wymiar przestrzeni liniowej
Przykłady
v u
1) X = R " R
u, v
0
|| ! = c
u v u v
c"R
Dowolne dwa wektory " R są liniowo zależne
u, v
2) X " R2
u
! = c są liniowo zależne
u v u v u, v
c"R
v
&" ! <" = c są liniowo niezależne
u v u v u, v
c"R
w są liniowo zależne ponieważ:
u, v,
w = a + b
v
u
a,b"R
kombinacja liniowa u i
v
Grzegorz Jastrzębski
Każda baza w R2 (minimalny układ liniowo niezależnych wektorów) składa się z 2 wektorów.
Z tego wynika, że wymiar tej przestrzeni wynosi 2.
3) X = R3
Jeśli w nie leżą na jednej płaszczyznie to dwa z nich leżą na tej samej płaszczyznie ale trzeci
u, v,
nie, więc:
<" w = a + b
u v
a,b"R
czyli w są liniowo niezależne.
u, v,
Każda baza w R3 składa się z 3 wektorów. Czyli wymiar tej przestrzeni wynosi 3.
Definicja 1.4. Mówimy, że punkty x1, . . . , xn przestrzeni liniowej są liniowo niezależne jeżeli
ą1x1 + ą2x2 + . . . + ąnxn = 0 ! ą1 = ą2 = . . . = ąn = 0 (1.3.1)
ą1
,...,ąn
"K
nie istnieją stałe ą1, . . . , ąn, z których conajmniej jedna jest rożna od 0, takie, że
ą1x1 + ą2x2 + . . . + ąnxn = 0
nie jest możliwe zapisanie któregokolwiek z punktów jako kombinacji liniowej pozostałych
Definicja 1.5. Kombinacją liniową punktów x1, . . . , xk nazywamy punkt
ą1x1 + ą2x2 + . . . + ąkxk
gdzie ą1, . . . , ąk " K
Jeżeli punkty nie są liniowo niezależne to są liniowo zależne
Definicja 1.6. Maksymalną liczbę liniowo niezależnych punktów przestrzeni liniowej X nazywamy
jej wymiarem i oznaczamy dim X
Definicja 1.7. Jeżeli dim X = k to każdy układ k liniowo niezależnych punktów nazywamy bazą tej
przestrzeni
Przykłady:
i) W R bazę tworzy każdy punkt x " R
ii) W R2 bazę tworzą dowolne dwa wektory nie leżące na jednej prostej
iii) W R3 bazę tworzą dowolne trzy wektory, które nie leżą na jednej płaszczyznie
Uwaga: Jeżeli x1, . . . , xn tworzą bazę przestrzeni X to dla każdego y " X punkty x1, . . . , xn, y są
liniowo zależne a zatem y daje się zapisać jako kombinacja liniowa punktów bazy, tzn.:
y = ą1x1 + ą2x2 + . . . + ąnxn
ą1
,...,ąn
"K
Definicja 1.8. Zbiór Y " X nazywamy podprzestrzenią liniową przestrzeni X jeśli:
ą1y1 + ą2y2 " Y (1.3.2)
y1,y2"Y
ą1
,ą2
"K
Rozdział 2
Przestrzenie liniowe metryczne
2.1. Przestrzenie liniowe unormowane
Definicja 2.1. Normą w przestrzeni liniowej X nad zbiorem skalarów K nazywamy funkcję:
X x ||x|| " R+ *" {0} (2.1.1)
taką, że:
n1) (||x|| = 0) !! x = 0
x"X
n2) ||x|| = || ||x|| (jednorodność)
"K x"X
n3) ||x + y|| ||x|| + ||y|| (aksjomat trójkąta)
x,y"X
Definicja 2.2. Przestrzeń liniową z określoną na tej przestrzeni normą nazywamy przestrzenią
unormowaną
Każdą przestrzeń unormowaną X można uważać za przestrzeń metryczną.
Definicja 2.3. Przyjmuje się następującą definicję metryki wyznaczonej przez normę:
def
=
d(x, y) ||x - y|| = ||x + (-y)|| (2.1.2)
Tak zdefiniowana funkcja spełnia aksjomaty metryki:
m1) d(x, y) = 0 ! x = y
n1
||x - y|| = 0 !! x - y = 0 ! x + (-y) = 0 ! -x = -y ! x = y
m2) d(x, y) = d(y, x)
n2
=
||x - y|| = ||(-1)(y - x)|| |-1| ||y - x|| = ||y - x||
m3) d(x, z) d(x, y) + d(y, z)
n3
||x - z|| = ||x + (y - y) - z|| = ||(x - y) + (y - z)|| ||x - y|| + ||y - z||
Przykłady
1) X = R ||x|| = |x|
x"R
n1) ||x|| = 0 ! |x| = 0 ! x = 0
x"R
n2) ||x|| = |x| = || |x| = || ||x||
"R x"R
n3) ||x + y|| = |x + y| |x| + |y| = ||x|| + ||y||
x,y"R
2) X = Rn
n
def
=
X x = (x1, . . . , xn) ||x|| x2
i
i=1
metryka wyznaczona przez tę normę:
n
d(x, y) = ||x - y|| = (xi - yi)2
i=1
3) X = C( a, b ) przestrzeń liniowa funkcji określonych na a, b
def
=
||f|| sup (|f|) metryka wyznaczona przez tę normę:
x" a,b
f"C( a,b )
d(f, g) = ||f - g|| = sup (|f(x) - g(x)|)
x" a,b
f,g"C( a,b )
nazywa się metryką Czybyszewa
2.2. ZBIEŻNOŚĆ CIGU PUNKTÓW PRZESTRZENI METRYCZNEJ 6
przykład
X = C( 0, 1 ), f(x) = x, g(x) = x2
1 1 1
x
d(f, g) = sup |f(x) - g(x)| = sup - x2 = sup (x-x2) = max(x-x2) = -( )2 =
2 2 4
x" 0,1 x" 0,1 x" 0,1
2.2. Zbieżność ciągu punktów przestrzeni metrycznej
Definicja 2.4. Ciąg liczbowy (an) jest zbieżny do liczby a " R ! |an - a| <
>0 M n>M
piszemy lim an = a
n"
Definicja 2.5. Ciąg punktów (xn)n"N przestrzeni metrycznej X nazywamy zbieżnym jeśli istnieje
taki punkt x " X, że
lim d(xn, x) = 0 (2.2.1)
n"
i piszemy
lim xn = x
n"
Definicja 2.6. Zbieżność ciągu (xn) punktów przestrzeni liniowej unormowanej X do punktu x " X
w sensie metryki wyznaczonej przez normę nazywamy zbieżnością według normy
lim xn = x według normy !! lim ||xn - x|| = 0 (2.2.2)
n" n"
Definicja 2.7. Mówimy, że ciąg (xn) przestrzeni metrycznej X spełnia warunek Cauchy ego jeżeli
d(xn, xm) < (2.2.3)
>0 M n,m>M
Twierdzenie 2.1. Ciąg, który spełnia warunek Cauchy ego nazywamy ciągiem podstawowym
Twierdzenie 2.2. Każdy ciąg zbieżny punktów przestrzeni metrycznej spełnia warunek Cauchy ego
-
zbieżny podstawowy
!
-
Dowód:Niech lim xn = x
n"
Wtedy
d(xn, x) <
>0 M n>M
1
i niech = czyli
2
1
d(xn, xm) <
2
>0 M n,m>M
Zatem:
d(xn, xm) d(xn, x) + d(x, xm)
n,m>M
1 1
< + =
2 2
skąd
d(xn, xm) <
>0 M n,m>M
więc ciąg (xn) jest podstawowy
Definicja 2.8. Przestrzeń metryczną X nazywamy zupełną jeżeli każdy ciąg podstawowy punktów X
jest zbieżny w tej przestrzeni.
Przykłady:
przestrzenie zupełne: Rn, a, b
przestrzenie które nie są zupełne: (a, b), a, b), (a, b , a, b \{c} gdzie a, b, c " R
Grzegorz Jastrzębski
2.3. Przestrzeń Banacha
Definicja 2.9. Przestrzenią Banacha nazywamy przestrzeń unormowaną zupełną
Przykłady
n
1. R2 ||x|| = x2
i
i=1
2. C( a, b ) ||f|| = sup |f|
x" a,b
metryczne
normow ne
B n ch
z pe ne
liniowe
Rys. 2.1: Klasyfikacja przestrzeni
Rozdział 3
Przestrzenie unitarne
Niech X przestrzeń linowa.
Definicja 3.1. X nazywamy przestrzenią unitarną jeśli dla każdej pary uporządkowanej (x, y) punk-
tów tej przestrzeni przyporządkowana jest liczba (x|y) taka, że:
u1) (x|x) > 0 !! x = 0 dla każdego x " X oraz (x|x) = 0 !! x = 0
u2) (ą1x1 + ą2x2|y) = ą1(x1|y) + ą2(x2|y)
ą1
,ą2
"R x1,x2,y"X
u3) (x|y) = (y|x)
x,y"X
(x|y) nazywamy uogólnionym iloczynem skalarnym wektorów x i y
Definicja 3.2. Normę w przestrzeni unitarnej X określamy wzorem:
def
||x|| = (x|x) (3.0.1)
x"X
i nazywamy normą wyznaczoną przez iloczyn skalarny
Sprawdzenie spełnialności aksjomatów normy przez normę wyznaczoną przez iloczyn
skalarny
n1) ||x|| = 0 !! x = 0
u1
(x|x) = 0 !! (x|x) = 0
n2) ||x|| = || ||x||
x"X "R
"
u2
(x|x) = (x|x) = 2(x|x) = 2 (x|x) = || ||x||
n3) ||x + y|| ||x|| + ||y||
x,y"X
Wykorzystamy nierówność Schwarz a |(x|y)| ||x|| ||y||, mianowicie:
x,y"X
2
u2
||x + y|| = (x + y|x + y) = (x|x) + 2(x|y) + (y|y) = ||x||2 + 2(x|y) + ||y||2
2
nier.Schw.
||x||2 + 2 ||x|| ||y|| + ||y||2 = ||x|| + ||y|| Uwaga: Każda przestrzeń unitarna jest
przestrzenią unormowaną
Definicja 3.3. Przestrzenią Hilberta nazywamy przestrzeń unitarną, która jest przestrzenią zupełną
w sensie normy wyznaczonej przez iloczyn skalarny
Przykłady
1) X = Rn jest przestrzenią Hilberta
x = (x1, . . . , xn) y = (y1, . . . , yn)
n
(x|y) = xi yi
i=1
n
||x|| = |x| = x2 = (x|x)
i
i=1
2) X = C( a, b ) nie jest przestrzenią Hilberta (choć jest przestrzenią Banacha tyle, że nie w sensie
normy wyznaczonej przez iloczyn skalarny)
b
(f|g) = f(t)g(t) dt
f,g"C( a,b )
a
3.1. ORTOGONALNOŚĆ W PRZESTRZENI UNITARNEJ 9
Norma wyznaczona przez ten iloczyn skalarny
b
||f|| = (f|f) = f2(t) dt
f,g"C( a,b )
a
norma kwadratowa
u1) (f|f) > 0 jeśli f a" 0
f,g"C( a,b )
jeżeli f a" 0 to istnieje x " a, b takie, że f(x) = 0 również f2(x) = 0 stąd
b b
(f|f) = f(t)f(t) dt = f2(t) dt > 0
a a
u2) (ą1f1 + ą2f2|g) = ą1(f1|g) + ą2(f2|g)
ą1
,ą2
"R f,g"C( a,b )
b b
(ą1f1 + ą2f2|g) = [(ą1f1(t) + ą2f2(t)]g(t) dt = ą1f1(t)g(t) dt +
a a
b b b
+ ą2f2(t)g(t) dt = ą1 f1(t)g(t) dt + ą2 f2(t)g(t) dt = ą1(f1|g) + ą2(f2|g)
a a a
b b
u3) (f|g) = f(t)g(t) dt = g(t)f(t) dt = (g|f)
f,g"C( a,b ) a a
Uwaga: Można udowodnić, ze dowolną przestrzeń unitarną da się rozszerzyć (przez dodanie nowych
elementów) do przestrzeni Hilberta (czyli zupełnej ze względu na normę wyznaczoną przez iloczyn
skalarny)
3.1. Ortogonalność w przestrzeni unitarnej
Niech X dowolna przestrzeń unitarna
Definicja 3.4. Punkty x, y " X nazywamy ortogonalnymi !! (x|y) = 0
Definicja 3.5. Punkt y " X nazywamy ortogonalnymi do podprzestrzeni Xo przestrzeni X jeśli jest
ortogonalny do każdego punktu x " X (x|y) = 0
x"X
Definicja 3.6. Punkt xo w X nazywa się rzutem ortogonalnym punktu x " X na podprzestrzeń
Xo przestrzeni X jeśli xo " Xo oraz różnica x - xo jest ortogonalna do Xo
Twierdzenie 3.1. Każdy punkt x " X ma co najwyżej jeden rzut ortogonalny na daną podprzestrzeń
Xo przestrzeni X
Dowód:
Przypuśćmy, że x , x są rzutami ortogonalnymi pewnego punktu x na podprzestrzeń Xo wtedy
o o
z definicji 3.6:
(x - x |y) = 0
o
x , x " Xo oraz
o o
(x
y"Xo - x |y) = 0
o
u2
Odejmując stronami: L = (x - x |y) - (x - x |y) =(x - x - (x - x )|y) = (x - x )
o o o o o o
czyli
(x - x |y) = 0 - 0 =! (x - x |y) = 0 ( )
o o o
y"Xo
W szczególności, wstawiając y = x - x do ( ) otrzymamy, że:
o o
n1
(x - x |x - x ) = 0 ! (||x - x ||)2 = 0 ! ||x - x || = 0 !! x - x = 0 ! x = x
o o o o o o o o o o o o
Zatem nie istnieją dwa różne rzuty ortogonalne x na Xo
3.2. Zbiory otwarte i domknięte w przestrzeniach metrycznych
Niech (X, d) przestrzeń metryczna, Z ą" X
Definicja 3.7. Otoczeniem Q(Po, r) punktu Po o promieniu r nazywamy zbiór wszystkich takich
punktów P , że:
d(P, Po) < r (3.2.1)
Grzegorz Jastrzębski
3.3. BAZA ORTONORMALNA PRZESTRZENI UNITARNEJ 10
Definicja 3.8. Sąsiedztwem S(Po, r) punktu Po o promieniu r nazywamy zbiór wszystkich takich
punktów P , że:
0 < d(P, Po) < r (3.2.2)
Definicja 3.9. Punkt P nazywamy punktem skupienia zbioru Z jeżeli w każdym sąsiedztwie tego
punktu P (dowolnie małym) znajduje się punkt ze zbioru Z
Definicja 3.10. Zbiór Z nazywamy otwartym jeśli dla każdego punktu P z tego zbioru istnieje
otoczenie punktu P o r > 0 zawarte w całości w zbiorze Z
Definicja 3.11. Zbiór Z nazywamy domkniętym jeśli zawiera wszystkie punkty skupienia tego
zbioru
1) X = R (0, 1 nie jest otwarty ani domknięty.
Dowolne otoczenie punktu 1 nie zawiera się w tym zbiorze
0 jest punktem skupienia, bo dowolne sąsiedztwo 0 zawiera punkty z tego zbioru, który nie należy
do tego zbioru.
2) X = R2 Z = {(x, y) : x2 + y2 < 1} *" {(7, 7)}
Z1 Po
Z1 jest otwarty ale Z nie jest otwarty bo nie istnieje otoczenie punktu Po zawarte w całości
w zbiorze Z
3) X = R2 Z = {(x, y) : x2 + y2 1} *" {(7, 7)}
Z1 Po
Z1 jest domknięty (zawiera wszystkie swoje punkty skupienia)
Po (7, 7) nie jest punktem skupienia tego zbioru ponieważ istnieje sąsiedztwo tego punktu, które
nie zawiera żadnego elementu zbioru Z.
Zbiór Z zawiera wszystkie swoje punkty skupienia więc też jest domknięty.
4) X = R 0, 1 jest domknięty bo dowolny punkt spoza tego zbioru nie jest punktem skupienia.
5) X = R (0, 1) jest otwarty bo dowolny punkt tego zbioru ma otoczenie zawarte w tym zbiorze.
6) X = R2 Z = Rn jest otwarty bo dla każdego punktu P " Rn z tego zbioru istnieje (każde)
otoczenie punktu P zawierające się w tym zbiorze.
Z = Rn jest domknięty bo zawiera wszystkie swoje punkty skupienia (bo zawiera wszystkie punkty
przestrzeni X).
7) X = R2 Z = {(x, y) : x2 + y2 r} *" {(0, y) : y " (1, 7)}
Z nie jest otwarty bo istnieje punkt, np.:(0, r), taki, ze nie istnieje otoczenie tego punktu zawarte
w Z
Z nie jest domknięty bo punkt (0, 7) jest punktem skupienia, gdyż każde sąsiedztwo tego punktu
zawiera elementy zbioru Z, który nie należy do zbioru Z
Twierdzenie 3.2 (O rzucie ortogonalnym). Jeżeli X jest przestrzenią Hilberta a podprzestrzeń Xo ą"
X jest domknięta, to każdy punkt x " X ma rzut ortogonalny na Xo
Każdy wektor da się zapisać w postaci = xo + gdzie wektor ortogonalny do Xo a xo " Xo
x x y y
3.3. Baza ortonormalna przestrzeni unitarnej
Niech X przestrzeń unitarna o wymiarze k, skończenie wymiarowa, tzn. dim X = k " N (czyli
każda baza składa się z k wektorów)
{e1, e2, e3} jest bazą gdyż:
1) jest układem wektorów liniowo niezależnych (bo żadnego
z tych wektorów nie da się wyrazić jako kombinację liniową
e2(0, 1, 0) pozostałych)
2) jest maksymalnym takim układem liniowo niezależnych
wektorów (ponieważ dowolny wektor = (x, y, z) " R3 da
u
e3(0, 0, 1)
się zapisać jako kombinacja liniowa e1, e2, e3 w następujący
e1(1, 0, 0)
sposób:
(x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe1 + ye2 + ze3
Grzegorz Jastrzębski
Definicja 3.12. Bazą ortonormalną przestrzeni X nazywamy każdy układ k wektorów tej przestrzeni
(a1 . . . ak) taki, że:
1 i = j
(ai|aj) = (3.3.1)
0 i = j
Twierdzenie 3.3. Jeżeli (a1 . . . ak) jest bazą ortonormalną przestrzeni unitarnej X, to dla każdego
x " X
k
x = (x|ai) ai (3.3.2)
i=1
(każdy wektor przestrzeni X da się zapisać jako kombinacja liniowa wektorów bazy ortonormalnej)
Dowód:
k
Niech x = iai i " R
i=1
k k k
wtedy: (x|aj) = iai aj = (iai|aj) = i (ai|aj) =
i=1 i=1 i=1
dla ustalonego j = 1 . . . k
= 1(a1|aj) + . . . + j-1(aj-1|aj) + j(aj|aj) + j+1(aj+1|aj) + . . . + k(ak|aj) =
z definicji 3.12
= j 1 = j czyli j = (x|aj) dla j = 1 . . . k
k k
zatem x = iai = (x|ai)ai
i=1 i=1
Twierdzenie 3.4. Jeżeli baza jest ortonormalna to jest układem wektorów niezależnych
Dowód:
k
Wezmy x = 0 wtedy jeżeli 0 = iai to i = (0|ai) = 0(|ai) = 0
i=1
Twierdzenie 3.5. Każda niepusta przestrzeń unitarna skończenie wymiarowa ma bazę
ortonormalną
Każdą przestrzeń unitarną k-wymiarową można uważać za izomorficzną z przestrzenią Rk.
Definicja 3.13. Każdą przestrzeń unitrną skończenie wymiarową nazywa się przestrzenią
euklidesową
Rozdział 4
Operatory i funkcjonały liniowe
Operator przekształcenie przestrzeni liniowej X w przestrzeń liniową Y
Funkcjonał operator o wartościach liczbowych.
4.1. Działania na operatorach
Niech X dowolny zbiór, Y przestrzeń unormowana
oraz operatory T1, T2 : X Y wtedy
T1 + T2 : X Y taki, że (T1 + T2)(x) = T1(x) + T2(x)
x"X
dla liczby ą
ąT1 : X Y (ąT1)(x) = ą T1(x)
x"X
Definicja 4.1. Niech X, Y przestrzenie liniowe unormowane
Operator T : X Y nazywamy liniowym jeśli:
L1)
T (x + y) = T (x) + T (y) (4.1.1)
x,y"Y
L2)
T (x) = T (x) (4.1.2)
"R("C x"Y
Przykłady
1. X = Y = R T (x) = ax + b a, b stałe (a, b " R)
x"R
T nie operatorem liniowym bo
jest
L2) T (x) = ax + b = (ax) + b = (ax + b)
"R x"R
nie jest spełnione, jak również
L1) T (x + y) = a(x + y) + b = T (x) + T (y) = ax + b + ay + b
2. X = Y = R T (x) = ax T jest operatorem liniowym bo
x"R
L1) T (x + y) = a(x + y) = ax + ay = T (x) + T (y)
x,y"R
L2) T (x) = a(x) = (ax) = T (x)
x"R
"R
są spełnione
Definicja 4.2. Operator T : X Y jest ciągły !!
lim xn ! lim T (xn) = T (x) (4.1.3)
n" n"
(xn)n"N "X
x"X
Definicja 4.3. Operator T : X Y jest ograniczony !!
||T (x)|| c ||x|| (")
c"R+ x"X
Twierdzenie 4.1 (Banacha). Operator liniowy T : X Y jest ciągły wtedy, i tylko wtedy, gdy jest
ograniczony
Uwaga 1: Można pokazać, że zbiór wszystkich operatorów liniowych T : X Y przy ustalonych
przestrzeniach liniowych unormowanych X, Y wraz z działaniami tworzy przestrzeń liniową.
4.2. PRZYKAADY OPERATORÓW LINIOWYCH 13
Co więcej, zbiór wszystkich operatorów liniowych ciągłych wraz z tymi działaniami tworzy prze-
strzeń liniową unormowaną operatorów liniowych ciągłych przekształcających X w Y oznaczaną przez
L(X, Y). Norma operatora liniowego ciągłego T : X Y jest zdefiniowana następująco:
||T ||L def sup ||T (x)|| (4.1.4)
=
x:||x|| 1
Uwaga 2:
||T (x)|| ||T ||L ||x|| (4.1.5)
x"X
oraz ||T ||L jest najmniejszą z liczb c spełniających nierówność " bo
||T ||L = sup ||T (x)|| sup c ||x|| c 1 = c
x:||x|| 1 x:||x|| 1
Sprawdzenie aksjomatów normy dla ||T ||L
n1) ||T ||L = 0 !! T a" 0 T (x) = 0
x"X
! T a"=! T (x) = 0 zatem dla c = 0
x"X
0 = ||0|| = ||T (x)|| c ||x|| = 0 czyli
x"X
0 ||T ||L 0
||T ||L jest najmniejszą stałą c dla której zachodzi warunek " a warunek " zachodzi dla c = 0
więc ||T ||L = 0
! Załóżmy, ze T a" 0 czyli istnieje xo " X takie, ze T (xo) = 0.
Zatem dla x = xo : 0 < ||T (x)|| ||T ||L ||xo|| stąd ||T ||L = 0
n2) ||ąT ||L = |ą| ||T ||L
ą"R T "L(X,Y)
! ||(ąT )(x)|| = ||ąT (x)|| = |ą| ||T (x)|| |ą| ||T ||L ||x||
c
zatem ||ąT ||L |ą| ||T ||L ponieważ ||ąT ||L jest najmniejszą stałą c dla której zachodzi
warunek:
||(ąT )(x)|| c ||x||
x"X
oraz |ą| ||T ||L jest pewną taką stałą
1
! T = ąT ą = 0
ą
1
1 1
Wtedy ||T (x)|| = ąT (x) = ||ąT (x)|| ||ąT ||L ||x||
ą ą
ą
x"X
c
1
Zatem ||T ||L ||ąT ||L
|ą|
|ą| ||L ||ąT ||L
||T
n3) ||T1 + T2||L ||T1||L + ||T2||L
T1,T2"L(X,Y)
||(T1 + T2)(x)|| = ||T1(X) + T2(x)|| ||T1(x)|| + ||T2(x)|| ||T1||L ||x|| + ||T2||L ||x|| =
x"X
||T1||L + ||T2||L ||x||
c
zatem ||T1 + T2||L ||T1||L +||T2||L gdyż ||T1||L +||T2||L jest pewną stałą c przy której zachodzi
||(T1 + T2)(x)|| c ||x||
x"X
oraz ||T1 + T2||L jest najmniejszą taką stałą.
4.2. Przykłady operatorów liniowych
"
"
1) X zbiór ciągów liczbowych an n=0 takich, że |an| < "
n=0
Operator T zdefiniujemy następująco:
"
T (an) = an T : X R (T jest funkcjonałem)
n=0
(an)"X
Grzegorz Jastrzębski
4.3. ZAOŻENIE OPERATORÓW 14
Jest liniowy gdyż:
" " "
L1) T (an + bn) = (an + bn) = an + bn = T (an) + T (bn)
an,bn"X n=0 n=0 n=0
" "
L2) T (ąan) = (ąan) = ą an = ąT (an)
ą"R an"X n=0 n=0
2) X zbiór wszystkich funkcji określonych na przedziale a, b
Operator liniowy T zdefiniujemy następująco:
T (f) = f T : X Y: zbiór wszystkich funkcji określonych na a, b
f"X
"
3) Z zbiór ciągów liczbowych an n=0 zbieżnych (X z przykładu 1 zawiera się w Z)
Norma w Z jest zdefiniowana następująco:
def
||an|| = sup |an| (4.2.1)
n
(an)"Z
Niech Y = R
Operator liniowy T : Z R zdefiniowany jest następująco
def
T (an) = lim an (4.2.2)
n"
(an)"Z
T an = lim an = lim an sup |an| = ||an||
T jest ograniczony gdyż: n" n"
n
(an)"X
Czyli dla dowolnej stałej c 1 zachodzi (i nie zachodzi dla żadnego c < 1)
||T (an)|| c ||an|| (bo ||T (an)|| 1 ||an||) zatem ||T ||L = 1
an"Z
4) Ta : R R a " R (= const)
Ta(x) = ax (4.2.3)
x"R
Ta jest liniowy. Jest również ograniczony a tym samym ciągły.
||Ta(x)|| = |T (x)| = |ax| = |a| |x| = |a| ||x|| czyli ||T (x)|| c ||x||
x"R c |a|
Co więcej ||Ta||L = |a|
Można pokazać, że:
T " L(R, R) ! T (x) = ax
a"R x"R
4.3. Złożenie operatorów
T1 T2
Niech T1 " L(X, Y), T2 " L(Y, Z)
X - Y - Z
--- ---
Definicja 4.4. Złożeniem operatorów T1 i T2 nazywamy operator T2T1 : X Z zdefiniowany nastę-
pująco
def
T2T1(x) = T2 T1(x) (4.3.1)
x"X
Dowód ograniczoności:
T1"L(X,Y)
T
||T2T1(x)|| = T1(x) = ||T2||L ||T1(x)|| ||T2||L ||T1||L ||x||
2
x"X
c
Wniosek z dowodu: ||T2T1||L ||T2||L ||T1||L
||T2||L ||T1||L jest pewną stałą c przy której zachodzi warunek (") a ||T2T1||L jest, z definicji, naj-
mniejszą taką stałą c.
Dowód liniowości
L1) (T2T1)(x + y) = (T2T1)(x) + (T2T1)(y) ! T2(T1(x + y) = T2(T1(x) + T1(y)) =
x,y"X
=
T2(T1(x)) + T2(T1(y))
L2) = (T2T1)(x) ! T2(T1(x)) = T2(T1(x)) = T2(T1(x))
"R x,y"X
Grzegorz Jastrzębski
4.4. TEORIA RÓWNANIA LINIOWEGO 15
n
Definicja 4.5. Potęgą T operatora liniowego ciągłego T " L(X, Y) nazywamy operator zdefiniowany
następująco
def
1
T = T
(4.3.2)
def
n n-1
T = T T dla n 2
n
T " L(X, Y)
indukcja po n:
1ć%) n = 1 oczywiste z założenia, że T " L(X, Y)
n-1 n n n-1
2ć%) z założenia, że T " L(X, Y) wynika, że T " L(X, Y) bo T jest złożeniem T, T
n
n
Uwaga: ||T ||L ||T ||L
n
n
T 2
||T (x)|| ||x|| ||T ||L ||x||
L
x"X
Przykład:
T : Rm Rn
T (x) = Ax gdzie A = [aij]nm
x"Rm
czyli
ł łł
ł łł ł łł
x1
y1 a11 . . . a1m
m
ł . śł
.
ł śł ł śł ł śł
. . .
.
. . .
T (x) = y = = ł śł yi = aijxj dla i = 1, . . . , n
ł ł ł ł
. . .
ł ł
j=1
yn an1 . . . anm
xm
Operator ten jest liniowy bo
L1) T (x + y) = A(x + y) = Ax + Ay = T (x) + T (y)
L2) T (x) = A(x) = (Ax) = T (x)
Jest ograniczony
2
n m n m m n m
2 n
||T (x)|| = (yi)2 = aijxj a2 x2 = a2 ||x||2
ij j ij
i=1 i=1 j=1 i=1 j=1 j=1 i=1 j=1
n m
czyli ||T (x)|| c ||x|| gdzie c = a2
ij
x"Rm i=1 j=1
Wniosek:
n m
||T ||L a2 bo ||T ||L jest najmniejszym c przy którym zachodzi: ||T (x)|| c ||x||
ij
i=1 j=1 x"Rm
Można pokazać, że:
T : Rm Rn jest liniowy !! T (x) = Ax
Anm x"Rm
Każdy operator liniowy T : Rm Rn daje się reprezentować macierzą Anm. Każda macierz wy-
znacza operator liniowy TA : Rm Rn
TA(x) = Ax
x"m
Uwaga: dla dowolnych macierzy Ank, Bkm
TATB = TAB
ABnm czyli TAB : Rm Rn oraz
TATB(x) = TA(TB(x)) = TA(Bx) = A(Bx) = AB(x) = TAB(x)
4.4. Teoria równania liniowego
X przestrzeń unormowana; T " L(X, X)
Rozważmy równanie postaci
x - T (x) = y (4.4.1)
Grzegorz Jastrzębski
4.4. TEORIA RÓWNANIA LINIOWEGO 16
gdzie y " X dane; x " X szukane
czyli równanie postaci
y = U(x) (4.4.2)
gdzie U = I - T Równanie to ma rozwiązanie !! istnieje operator odwrotny U-1 x = U-1(y)
-1
Definicja 4.6. Operatorem odwrotnym do operatora T : X Y jest operator T : Y X taki, że
-1
T T = I
Uwaga: Jeśli U " L(X, Y) oraz U-1 istnieje to U-1 " L(Y, X) czyli U-1 jest liniowy oraz zależy
w sposób ciągły od y " Y
Twierdzenie 4.2. Jeżeli X jest przestrzenią Banacha oraz T " L(X, Y) przy czym ||T ||L < 1 to
równanie (4.4.1) ma dla dowolnego y " X dokładnie jedno rozwiązanie x = U-1(y)
Dowód: n-te przybliżenie rozwiazania
2 2
x = y + T (x) = y + T (y + T (x)) = y + t(y) + T (x) = y + T (y) + T (y + T (x)) = . . . = y + T (y) +
n-1 n n
. . . + T (y) + T (x) = xn + T (x)
! n="
0
Definiujemy n-te przybliżenie następująco:
n-1
2 n-1 k
xn = y + T (y) + T (y) + . . . + T (y) = T (y)
k=0
Rozwiązaniem jest
n-1 "
n k n
x = lim (xn + T (x)) = lim xn = lim T (y) = T (y)
n " n " n "
k=0 n=0
Szereg Neumann a
Można pokazać, że jeśli ||T ||L < 1 to szereg Neumann a jest zbieżny a zatem istnieje rozwiązanie.
Przykład:
X = Rn; y = T (x); T : X X
(istnieje macierz Ann taka, że y = Ax układ n równań liniowych z n niewiadomymi)
dla y = 0 Ax = 0 układ równań jednorodnych z n niewiadomymi.
Układ Ax = 0 nigdy nie jest sprzeczny bo x = 0 jest zawsze rozwiązaniem . Co więcej, układ ma
dokładnie jedno rozwiązanie (x=0)
! r(A) = n ! r(A) n(A) n(A ) n ! n(A) = n(A ) !
układ Ax = y ma dokładnie jedno rozwiązanie dla dowolnego y (A = [A|y])
Fakt (uogólnienie powyższego):
X przestrzeń Banacha, T " L(X, X)
Równanie x - T (X) = y ma rozwiązanie dla każdego y " X ! x = 0 jest jedynym rozwiązaniem
równania jednorodnego x - T (x) = 0
Przykład
X zbiór wszystkich funkcji ciągłych na przedziale a, b a, b " R
Zdefiniujemy następujący operator całkowy
b
T (f) = h gdzie h(s) = N(s, t)f(t) dt (4.4.3)
f"X s" a,b
a
N(s, t) jądro operatora T (funkcja ciągła i określona w przedziale a, b a, b )
Można pokazać, że tak zdefiniowany operator T jest liniowy i ograniczony a tym samym ciągły, czyli
T " L(X, X)
||T (f)|| = ||h|| = sup |h(s)| oraz ||f|| = sup |f(t)|
s" a,b t" a,b
Z Faktu wynika, że:
Dla każdej funkcji g, określonej na a, b istnieje funkcja f określona na a, b spełniająca równanie
całkowe:
b
f(s) = N(s, t)f(t) dt = g(s) !!
s" a,b
a
Grzegorz Jastrzębski
4.5. WIDMO OPERATORA LINIOWEGO 17
jedynie funkcja f a" 0 jest rozwiązaniem równania
b
f(s) = N(s, t)f(t) dt = 0
s" a,b
a
4.5. Widmo operatora liniowego
X przestrzeń Banacha; T " L(X, X); " R
Definicja 4.7. Jeżeli równanie T (x) - x = y ma dla każdego y (w szczególności y = 0) dokładnie
jedno rozwiązanie, to mówimy, że jest wartością regularną operatora T
jest wartością regularną operatora T !! istnieje operator (T - I)-1
Definicja 4.8. Zbiór wszystkich liczb , które nie są wartościami regularnymi operatora T nazywamy
jego widmem i oznaczamy przez Sp(T )
Twierdzenie 4.3. Jeżeli " Sp(t) ! || ||T ||L
Definicja 4.9. Liczba nazywa się wartością własną operatora T jeżeli równanie T (x) - x = 0
ma różne od zera rozwiązania.
Każde z takich rozwiązań nazywamy elementem (wektorem) własnym odpowiadającej wartości
własnej
Twierdzenie 4.4. Każda wartość własna operatora T należy do jego widma
Jeżeli jest wartością własną, to równanie T (x)x = 0 ma więcej niż jedno rozwiązanie, czyli
istnieje y = 0 przy którym równanie T (x) - x = y nie ma dokładnie jednego rozwiązania. Zatem
nie jest wartością regularną czyli należy do widma.
widmo
wartość regularna
wartość własna
R
Rys. 4.1: Uwaga: Nie każdy element widma operatora T jest jego wartością własną
4.6. Operatory samosprzężone
Niech X przestrzeń Hilberta, T " L(X, X)
Definicja 4.10. Jeżeli dla dowolnych x, y " X
T (x)|y = x|T (y) (4.6.1)
to T nazywamy operatorem samosprzężonym
Grzegorz Jastrzębski
Przykład:
X = Rn
Operator T : L(Rn, Rn) opisany macierzą Ann jest samosprzężony gdy macierz jest symetryczna,
bo:
(A x|y) = T (x)|y = x|T (y) = (x|A y)
(A x)T ( = ( (A y)
y) x)T
(A x)T y = xT A y
xT AT y = xT A y
AT = A
czyli macierz jest symetryczna
Twierdzenie 4.5. Jeżeli T jest operatorem samosprzężonym, to
T
||T || = sup (x)|y (4.6.2)
||x||=1
Uwaga:
|sup xn| gdy |sup xn| > |inf xn|
sup |xn| = ( )
|inf xn| gdy |sup xn| < |inf xn|
Definicja 4.11. Jeżeli T jest operatorem samosprzężonym, to liczby
def T
m(T ) = inf (x)|x (4.6.3)
||x||=1
def T
M(T ) = sup (x)|x (4.6.4)
||x||=1
nazywamy odpowiednio kresem dolnym (m) i górnym (M) operatora T
Z twierdzenia 4.5 i wzoru ( ) wynika, że:
||T || = max |m(T )| , |M(T )| (4.6.5)
Twierdzenie 4.6. Każda liczba należąca do widma operatora samosprzeżonego spełnia nierówność
m(T ) M(T ) (4.6.6)
obie liczby m(T ) i M(T ) są elementami widma.
Twierdzenie 4.7 (Banacha o punkcie stałym operatora zwężającego). Jeżeli X jest przestrzenią
Banacha, T " L(X, X) oraz istnieje stała ą < 1 taka, że
x, y " X: d(T (x), T (y)) ąd(x, y)
to w przestrzeni X istnieje jeden taki punkt x", że x" = T (x")
Dodatek A
Pytania na egzamin
Część pierwsza (rozdziały 1., 2.)
1. Co to jest metryka? Podaj przykład metryki.
2. Co to jest przestrzeń metryczna? Podaj przykład przestrzeni metrycznej.
3. Co to jest przestrzeń liniowa? Podaj przykład przestrzeni liniowej.
4. Kiedy mówimy, że punkty przestrzeni liniowej są liniowo niezależne? Co nazywamy bazą
przestrzeni liniowej? Co to jest wymiar przestrzeni liniowej?
5. Co to jest norma? Podaj przykład normy.
6. Co to jest przestrzeń unormowana? Podaj przykład takiej przestrzeni.
7. Jak wygląda metryka wyznaczona przez normę? wykaż, że jest metryką.
8. Co to jest metryka pitagorejska? Wykaż, że jest metryką.
9. Co to jest metryka Czybyszewa?
10. Co to jest zbieżność według normy?
11. Jaki ciąg nazywamy podstawowym? Podaj warunek Cauchy ego.
12. Jaką przestrzeń nazywamy zupełną? Podaj przykład takiej przestrzeni.
13. Co to jest przestrzeń Banacha? Podaj przykład przestrzeni Banacha.
Część druga (rozdział 3.)
1. Co to jest przestrzeń unitarna? Podaj przykład takiej przestrzeni.
2. Jak wygląda norma przestrzeni unitarnej? Wykaż, że jest normą.
3. Co to jest przestrzeń Hilberta? Podaj przykład takiej przestrzeni.
4. Jaki zbiór w przestrzeni metrycznej nazywamy otwartym a jaki domkniętym? Podaj przykłady
zbiorów otwartych i zbiorów domkniętych.
5. Czy zbiór Rn jest otwarty? Czy jest domknięty? Podaj przykład zbioru, który nie jest otwarty
ani domknięty.
6. Jakie punkty przestrzeni unitarnej nazywamy ortogonalnymi? jaki punkt jest ortogonalny do
przestrzeni?
7. Co to jest rzut ortogonalny? Twierdzenie o rzucie ortogonalnym.
8. Co to jest baza ortonormalna przestrzeni unitarnej? Podaj przykład takiej bazy.
Część trzecia
1. Co to jest operator liniowy? Podaj przykład takiego operatora?
2. Co nazywamy funkcjonałem? Podaj przykład funkcjonału.
3. Co to jest norma operatora? Podaj normę dowolnie wybranego operatora.
4. Jaki operator liniowy nazywamy ciągłym a jaki ograniczonym?
5. Podaj dwa przykłady operatorów ciągłych. Ile wynoszą normy tych operatorów?
6. Jak wygląda operator liniowy wyznaczony przez macierz? Czy jest ograniczony?
7. Jakiego równania dotyczy teoria równania liniowego? Twierdzenie Banacha o operatorze od-
wrotnym.
8. Jaki jest związek między rozwiązywalnością równania liniowego niejednorodnego a rozwiązy-
walnością równania liniowego jednorodnego?
9. Co nazywamy wartością regularną a co wartością własną operatora? Widmo operatora linio-
wego. Czy każdy element widma jest wartością własną operatora?
10. Pojęcie operatora samosprzężonego. Podaj przykład takiego operatora. Norma operatora sa-
mosprzężonego.
11. Twierdzenie o widmie operatora samosprzężonego.
Dodatek B
Oznaczenia
d(x, y) uogólniona odległość x od y
N zbiór liczb naturalnych
R zbiór liczb rzeczywistych
C zbiór liczb zespolonych
K zbiór skalarów
kwantyfikator szczegółowy (istnieje takie ..., że ...)
kwantyfikator ogólny (dla wszystkich ... zachodzi ...)
<" negacja
dim X wymiar przestrzeni liniowej X
||x|| norma wektora x
||T ||L norma operatora
C( a, b ) zbiór funkcji określonych na a, b
(a|b) iloczyn skalarny
Wyszukiwarka
Podobne podstrony:
Elementy analizy funkcjonalnej 2Filtry elektryczne elementy analizy i syntezyćw 3 analiza i funkcje białekAnaliza Funkcjonalna II WykładMajac utworzona liste minimum 5 elementow, napisz funkcje ze zmianami elementuanaliza funkcjonalna egzaminElementy analizy korelacji i regresjiMusielak J Jak powstawała analiza funkcjonalnaanaliza funkcjonalna kolokwiumAnaliza Funkcjonalna Zadania 1Elementarna analiza jakościowa związków organicznychElementy analizy wektorowej lista zadańelementy analizy wektorowej zadaniaGewert M Analiza Matematyczna i Elementy Analizy Wektorowej Zadaniaanaliza funkcjonalna pytania na egzaminAnaliza funkcjonowania Bankowości Elektronicznej na przykładzie XYZ w latach 2005 2009M Lemańczyk Wykłady z analizy funkcjonalnejwięcej podobnych podstron