" B
" M
" H
" A




q
F = Fe = qE
q

Fm = qv × B
v B


2







F = Fe + Fm = q(E + v × B)
Fm/q = v × B






" · B = 0 Ò! B · ds = 0
S
" × B = µ0J Ò! B · dl = µ0I
L

µ0 = 4Ä„ × 10-7
J


" · J = 0







B · dl = µ0I
L

L µ0










M
n "v
Mk
k=1
M = lim
"v0
"v







H
B
H = - M
µ0

" × H = J

M = µ0ÇmH

B = µ0(1 + Çm)H = µ0µrH





B = µH

µ = µ0µr

µr = 1 + Çm








µr d" 1 Çm

µr e" 1 Çm

µr >> 1 Çm







1
3
wm = H · B
2
V

H · B
Wm = wm dv = dv
2
V V







¨ zÅš 1
L = = = B · ds
I I I
S




¨2 zÅš2 1
L21 = = = B1 · ds2
I1 I1 I1 S2





" · B = 0 Ò! B · ds = 0
S
" × H = J Ò! H · dl = I
L


B2n = B1n
1n × (H2 - H1) = Js







" %EÅ‚
" Ã
" µ

" ·(= µ/%EÅ‚) (&!)



µ0 4Ä„ × 10-7
·0 = H" H" 120Ä„ H" 377 (&!)
%EÅ‚0 1/(36Ä„) × 10-9



%Ełr
1
2.25
2.6
3.5
9
1200



Ã
6.3 × 107 2.9 × 104
5.9 × 107 2.2 × 100
4.1 × 107 1.6 × 10-3
3.8 × 107 10-10 - 10-14
1.0 × 107 1.3 × 10-18
0.94 × 107 10-23



Çm
4000
700
100
2.2 × 10-5
-8 × 10-6
-8 × 10-6



%EÅ‚r Ã
%EÅ‚r Ã
0.01 . . . 0.03
10 . . . 20 0.003 . . . 0.01
3 . . . 4 0.0001 . . . 0.003








" × E = 0 Ò! E · dl = 0
L
" · D = qv Ò! D · ds = QV(S)
S
D = %EłE


" × H = J Ò! H · dl = IS(L)
L
" · B = 0 Ò! B · ds = 0
S
B = µH






"B
" × E = -
"t





"B
E · dl = - · ds
"t
L S(L)







E = E · dl
L
L

Åš = B · ds
S(L)

L
dÅš
E = -
dt






E











"B
" × E = -
"t
" × H = J
" · D = qv
" · B = 0


"qv
" · J = -
"t






" · (" × H) = 0 = " · J

"qv/"t

"qv "D
" · (" × H) = 0 = " · J + = " · J +
"t "t

"D
" × H = J +
"t






"B
" × E = -
"t
"D
" × H = J +
"t
" · D = qv
" · B = 0








"B
E · dl = - · ds
"t
L S(L)


"D
H · dl = J + · ds
"t
L S(L)

D · ds = QV(S)
S
B · ds = 0
S




"D/"t

"D " "E "P
2
Jprzes = = (%Eł0E + P) = %Eł0 +
"t "t "t "t

"P
2
Jpol =
"t









"E
Jcalk = Jprzew + Jprzes = Jprzew + Jpol + %Eł0
"t
"P "E
2
= ÃE + + %EÅ‚0
"t "t







E1t = E2t
1n × (H2 - H1) = Js
D2n-D1n = qs
B2n = B1n





(t)
E a" Ex(x, y, z; t)1x + Ey(x, y, z; t)1y + Ez(x, y, z; t)1z

x E
Ex(x, y, z; t) = E0x(x, y, z) cos(Ét + Õx) = E0x cos(Ét + Õx)
E






E = Ex + Ey = 1xE0x cos(Ét + Õx) + 1yE0y cos(Ét + Õy)
x y
= 1xRe{E0xejÕ ejÉt} + 1yRe{E0yejÕ ejÉt}

x y
= Re (1xE0xejÕ + 1yE0yejÕ )ejÉt
= Re{E0ejÉt}

x y
E0 = 1xE0xejÕ + 1yE0yejÕ
E