Równania ruchu wahadła balistycznego w tych warunkach można zapisać w następującej postaci:
Iiip = - kq>; gdzie
cp - kąt skręcenia od położenia równowagi,
<p - przyspieszenie kątowe, ktp - moment sił sprężystości.
Ogólne rozwiązanie tego równania ma postać:
<p - cpm*cos(ci>t + a);
T = 2n/w
Po przekształceniach otrzymujemy ostatecznie, że:
4ncpo,dxMT i(Ri2 • R22)
V =
mr (T,2 - T22)
Wyniki pomiarów
Lp. |
R2 = min = 0,01 [m] |
R1 = max = 0,08 [m] | ||||
[ ] |
10T,[s] |
T2[s] |
10T,[s] |
T. [s] | ||
1 |
16° |
16,901 |
1,6901 |
16° |
28,592 |
2,8592 |
2 |
17° |
16,914 |
1,6914 |
17° |
28,595 |
2,8595 |
3 |
NJ O O |
16,917 |
1,6917 |
20° |
28,61 |
2,861 |
4 |
27° |
16,927 |
1,6927 |
27° |
28,63 |
2,863 |
5 |
30° |
19,932 |
1,6932 |
30° |
28,644 |
2,8644 |
6 |
31° |
16,938 |
1,6938 |
31° |
28,644 |
2,8644 |
7 |
31° |
16,935 |
1,6935 |
31° |
28,639 |
2,8639 |
8 |
27° |
16,931 |
1,6931 |
27° |
28,631 |
2,8631 |
9 |
27° |
16,931 |
1,6931 |
27° |
283628 |
28362,8 |
10 |
19° |
16,919 |
1,6919 |
19° |
28,6929 |
2,86929 |
Lp- |
m [kg] |
R2 [m] |
R1 [m] |
r [m] |
M [kg] |
1 |
0,002 |
0,01 |
0,08 |
0,122 |
0,12 |
v =
4n<pm,xMT,(R,2 - R12)
mr (Tj2- T22)
v= 9,134645
Analiza błędów pomiaru
Błąd bezpośredni obliczony jako odchylenie standardowe dla pomiarów bezpośrednich: A<pra* = 0,1028445 [Ra]