Zestaw 2 zadań ze Statystyki opisowej Opracował: dr Adam Kucharski
spółdzielni pszczelarskich. Sprzedaje się go w słoikach o różnej wielkości. Dla danych dotyczących wielkości sprzedaży wyznaczyć i zinterpretować średnią arytmetyczną, medianę oraz dominantę masy słoika.
Masa słoika miodu [g] |
Liczba sprzedanych słoików |
100 |
63 |
150 |
45 |
250 |
68 |
500 |
12 |
1000 |
12 |
Zadanie 20
Cztery rodzaje hamburgerów sprzedawanych w barze szybkiej obsługi charakteryzują się następującą średnią kalorycznością: 405 kcal, 420 kcal, 440 kcal, 450 kcal. Wiedząc, że do badania wybrano po 15 hamburgerów pierwszego i drugiego rodzaju oraz po 20 trzeciego i czwartego wyznacz średnią zawartość kalorii dla hamburgera bez rozróżniania jego rodzaju. Dla sześciu losowo wybranych hamburgerów pierwszego rodzaju otrzymano następujące ilości kalorii: 401, 410, 415, 401, 403, 407. Czy na tej podstawie można powiedzieć, że połowa z nich zawiera nie więcej niż 405 kcal?
Zadanie 21
Przeanalizowano liczbę trafnych odpowiedzi otrzymanych podczas testu ze statystyki. Na tej podstawie wyznaczyć i zinterpretować kwartyle oraz dominantę przedstawionego poniżej rozkładu.
Liczba poprawnych odpowiedzi |
Liczba studentów |
0-3 |
35 |
3-6 |
26 |
6-9 |
31 |
9-12 |
21 |
12-15 |
17 |
15-18 |
12 |
18-21 |
8 |
Zadanie 22
Mediana wzrostu 150 dzieci zawiera się w przedziale (155, 160) cm, do którego należało 40 dzieci i wynosi 158 cm. Ile dzieci miało wzrost poniżej 155 cm?
Zadanie 23
Jaka jest górna granica przedziału mediany w pewnym szeregu rozdzielczym jeżeli wiadomo, że: rozpiętość tego przedziału wynosi 10, jego liczebność równa się 50, skumulowana liczebność przedziału poprzedzającego wynosi 30. Mediana jest równa 15 zaś do badania wybrano 80 obiektów.
Zadanie 24
Jaka jest górna granica przedziału dominanty w pewnym szeregu rozdzielczym jeżeli wiadomo, że: rozpiętość tego przedziału wynosi 10, jego liczebność równa się 50, liczebność przedziału poprzedzającego wynosi 30 a następnego 20. Dominanta jest równa 15.