7808336006

7808336006



POLITECHNIKA LUBELSKA

Po przekształceniu otrzymuje się:

Rt='~R1+~_(Rw+RP+ ^    <14)

gdzie:

Rp    - rezystancja przewodów łączeniowych,

Rw    - rezystancja opornika wyrównawczego.

Ponieważ każdej wartości rezystancji rezystora termometrycznego R odpowiada ściśle określone połażenie suwaka potencjometru więc można potencjometr wyskalować w stopniach temperatury Zaletą mostków zrównoważonych jest niezależność ich wskazań od wartości napięcia zasilającego pod warunkiem takiego jego doboru, aby prąd płynący przez rezystor termometryczny nie powodował niedopuszczalnego błędu pomiarowego od samo podgrzania [4]. Układ zrównoważonego mostka dwuprzewodowego może być stosowany tylko wtedy, kiedy opór przewodów łączeniowych jest stały. Jeżeli opór ten zmienia się pod wpływem zmian temperatury, to wtedy stosuje się układ zrównoważonego symetrycznego lub niesymetrycznego mostka trójprzewodowego. W mostkach tego typu, przy założeniu, że rezystancja przewodów łączeniowych są równe, następuje kompensacja zmian ich rezystancji pod wpływem temperatury i wynik pomiaru niezależna jest od bezwzględnej wartości oporu przewodów łączeniowych [4],

Układy mostkowe równoważone samoczynnie są wykonywane jako odmiana samoczynnych kompensatorów napięciowych. Są one najczęściej zasilane napięciem stałym, lecz buduje się również takie układy zasilane prądem zmiennym (wymagają one jednak starannego ekranowania przewodów łączeniowych).

Układy mostkowe niezrównoważone są to najczęściej mostki Wheatstone'a stosowane do pomiarów zarówno statycznych jak i dynamicznych ze względu na zależność wskazań układu od stałości napięcia zasilającego stosowane są one w pomiarach laboratoryjnych, rzadziej w pomiarach przemysłowych.

Najszerzej rozpowszechnione są układy mostkowe zasilane napięciem przemiennym, które noszą nazwę mostków tensometrycznych i wykonywane są zazwyczaj jako przyrządy uniwersalne, umożliwiające pomiar różnych wielkości nieelektrycznych za pomocą czujników rezystancyjnych, indukcyjnych transformatorowych. Dokładności uzyskiwane za pomocą mostków tensometrycznych są rzędu 0,5 -1,5%.

Ka tet/r.


rł/?7#7</, Mec/jarw/Ar/ P/ynów I /Va/jęrfó w M-Otrw ic^\rcfw <g> 2013

15



Wyszukiwarka

Podobne podstrony:
54 M. Mokwa z której po przekształceniu otrzymuje się: ksjz = (26nD)6    (17) Należy
Zdjecie1096 lub inaczej (Oxsy ~ (a + r sin a)1 + j/i + r • (l ■ cos#)]* Po porównaniu i przekształce
PB250320 d(lnk, - lnk2)_ Ey> -E(a2) dT ~ RT2 Po przekształceniu otrzymamy dlnk, Ęg> _dlnk2 E(A
Image0088 BMP Po wykonaniu szeregu przekształceń, otrzymuje się dla mocy czynnej rozpatrywanego odci
5.4. REZONANSOWE UKŁADY KOMUTACJI WEWNĘTRZNEJ 243 Po dokonaniu przekształceń otrzymuje się następują
MG!77 Po jej przekształceniu otrzymuje się wzór, na podstawie którego wyzna, się współczynnik
(4.25) moment (4.26) Po uporządkowaniu otrzymuje się wzór określający długość ramienia a: [ a = kc +
to przy H = const po całkowaniu otrzymuje się, że gdzie: Mx = Cc" = 0,098 -106 = 0,98 • 105 A-m
CLEBSCH 5 Po scałkowaniu otrzymuje się: x3 EIv = C + Ra— +MAx-p — AB X2    A EIv = C
2 (2298) Str. - 2 A po podstawieniu: i, j = 1,2 otrzymuje się: II P = 2n2m0 p,J =< pn = ~(nxm2 +
dTR dQ = P Po przekształceniach otrzymujemy: Wyrażenie jest odwrotnością cenowej elastyczności
Rozdział 1axb = (1.4) Po przekształceniach otrzymujemy: (1.5)axb = [a b — a b ,-a b +a b ,a b — a bR
CCI20091105002 132 8. Hydrauliczne obliczanie przewodów pod ciśnienia Po porównaniu (8.7) z (8.8) o
DSCN1149 Skąd po przekształceniach otrzymujemy równanie 2sin2^ -f y/Ssin^ —1=0, którego rozwiązaniam

więcej podobnych podstron