HSM

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Nonlinear system identification

under various prior knowledge

Zygmunt Hasiewicz, Przemys law ´

Sliwi´

nski, Grzegorz Mzyk

The Institute of Computer Engineering Control and Robotics

Wroc law University of Technology, POLAND

IFAC’08, Seoul, July 9th, 2008

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Approaches to system identification

parametric (traditional)

nonparametric

parametric-nonparametric (combined)

semiparametric

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Static nonlinearity

k

y

k

u

k

v

k

z

)

(

m

Figure:

Static nonlinear element

R

(

u

) =

E

{

y

k

|

u

k

=

u

} =

E

{

m

(

u

k

) +

z

k

|

u

k

=

u

} =

m

(

u

)

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Two kinds of knowledge

1

parametric, (shape of formula describing

m

(

u, c

) =

m

(

u

)

)

m

(

u, c

)

=

c

1

f

1

(

u

) +

c

2

f

2

(

u

) +

...

+

c

p

f

p

(

u

)

or

m

(

u, c

)

=

f

1

(

u, c

1

) ◦

f

2

(

u, c

2

) ◦

...

f

p

(

u, c

p

)

e.g.

m

(

u, c

) =

c

1

+

c

2

u

+

c

3

u

2

or

m

(

u, c

) =

c

1

(

sin c

2

u

+

c

3

e

c

4

u

)

2

non-parametric, (measurements)

{(

u

k

, y

k

)}

N

k

=

1

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

The classical approach (parametric)

b

c

N

=

arg min

c

N

k

=

1

(

y

k

m

(

u

k

, c

))

2

Features:

fast convergence to the optimal model in the class

m

(

u, c

)

(under rich a priori knowledge)

but, the risk of systematic approximation error when the
model is bad

complicated and badly conditioned computations (linear or
nonlinear least squares)

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Nonparametric estimates

Orthogonal expansion, kernel regression

are based on the measurements only

does not involve the unknown characteristic must belong to
the finite dimmensional class (

p

∞ as N

∞)

converge to the true characteristic

are computationally simple

have more deegrees of freedom (the choice of tunning
parameters and basis functions)

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Hammerstein system

k

u

k

y

k

z

k

w

( )

μ

{ }

0

i

i

γ

=

k

v

R

(

u

) =

E

{

y

k

|

u

k

=

u

} =

E

(

i

=

0

γ

i

µ

(

u

k

i

) +

z

k

|

u

k

=

u

)

=

γ

0

µ

(

u

) +

ζ

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Nonparametric algorithms

Assumptions

The nonlinear characteristic

m

(

u

)

can be an arbitrary

function, square integrable on

[−

1, 1

]

, and e.g.:

differentiable
continuous
piecewise-smooth

There is a set of sorted input-output measurements

{

u

l

, y

l

}

,

l

=

1, . . . , k.

Remark

The class of admissible characteristic is now so ample that it
cannot be represented by any parametric model

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Orthogonal series basics

Observation

Any nonlinearity µ

(

u

)

has its orthogonal expansion

µ

(

u

)

=

α

0

+

α

1

·

p

(

u

) + · · · +

α

K

·

p

K

(

u

) + · · ·

ad infinitum

=

i

=

0

α

i

·

p

i

(

u

)

where

{

p

i

}

, i

=

0, 1, . . . is an orthogonal basis in L

2

[−

1, 1

]

and

α

i

=

h

µ

, p

i

i =

Z

1

1

µ

(

u

) ·

p

i

(

u

)

du

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Orthogonal series estimate

A generic orthogonal series algorithm

An orthogonal series algorithm has a form

ˆµ

(

u

) =

K

(

k

)

i

=

0

ˆα

i

·

p

i

(

u

)

where

K

(

k

)

is an non-decreasing number sequence and

ˆα

i

=

k

l

=

1

Z

u

l

u

l

1

y

l

·

p

i

(

u

)

du

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

MISE error

The performance of the algorithm is measured by a mean
integrated square error

MISE ˆµ

=

E

Z

1

1

(

µ

(

u

) −

ˆµ

(

u

))

2

du

Error decomposition

MISE ˆµ

=

approx

2

µ

K

- deterministic error

z

}|

{

i

=

K

(

k

)+

1

α

2

i

+

stochastic errors

z

}|

{

bias

2

ˆµ

z

}|

{

K

(

k

)

i

=

0

bias

2

ˆα

i

+

var ˆµ

z

}|

{

K

(

k

)

i

=

0

var ˆα

i

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example I – Legendre polynomial series estimate

Legendre polynomial estimate

Legendre polynomial basis is recursively defined as

p

i

(

u

) =

q

2i

+

1

2

·

P

i

(

u

)

where

P

i

(

u

) =

2i

1

i

·

xP

i

1

(

u

) −

i

1

i

·

P

i

2

(

u

)

with

P

1

(

u

) =

u and P

0

(

u

) =

1

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example II – Chebyshev polynomial series estimate

Chebyshev polynomial estimate

Chebyshev polynomial basis is recursively defined as

p

i

(

u

) =

q

1

1

u

2

·

P

i

(

u

)

where

P

i

(

u

) =

2xP

i

1

(

u

) −

P

i

2

(

u

)

with

P

1

(

u

) =

u and P

0

(

u

) =

1

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Convergence & rates

Convergence

If

K

(

k

) →

∞ and K

(

k

)

/k

0 then

MISE ˆµ

0 as k

∞.

Convergence rate

Let λ be a number of derivatives of µ. If K

(

k

) =

k

1

2λ

+

1

then

MISE ˆµ

k

2λ

2λ

+

1

.

the smoother nonlinearity the faster convergence

the rate can be established for smooth nonlinearities only

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example III - Wavelet series estimate

Any nonlinearity can be represented in a multiresolution form

µ

(

u

)

=

A ’crude’ approximation

z

}|

{

2

M

1

n

=

0

α

Mn

·

ϕ

Mn

(

u

) +

details at the resolution

2

M

z

}|

{

2

M

1

n

=

0

β

Mn

·

ψ

Mn

(

u

) + · · ·

+

details at the resolution

2

K

1

z

}|

{

2

K

1

1

n

=

0

β

K

1,n

·

ψ

K

1,n

(

u

) + · · ·

ad infinitum

where

α

Mn

=

Z

1

1

µ

(

u

) ·

ϕ

Mn

(

u

)

du and β

mn

Z

1

1

µ

(

u

) ·

ψ

mn

(

u

)

du

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example III - multiresolution approximation

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

K = 4

m

K = 5

K = 3

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example III - Wavelet series estimate

A generic wavelet estimate

The wavelet estimate is of the form

ˆµ

(

u

) =

2

M

1

n

=

0

ˆα

Mn

·

ϕ

Mn

(

u

) +

K

(

k

)−

1

m

=

M

2

m

1

n

=

0

ˆβ

mn

·

ψ

mn

(

u

)

where

ˆα

Mn

=

k

l

=

1

y

l

·

Z

u

l

u

l

1

ϕ

Mn

(

u

)

du and ˆβ

mn

=

k

l

=

1

y

l

·

Z

u

l

u

l

1

ψ

mn

(

u

)

du

ϕ

(

u

)

and ψ

(

u

)

can be from Haar or Cohen-Daubechies-Vial

family

. . .

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Convergence & rates

Convergence and its rate

If

K

(

k

) →

∞ and 2

K

(

k

)

/k

0 then

MISE ˆµ

0 as k

∞.

Let λ be a number of derivatives of µ. If K

(

k

) =

1

2λ

+

1

log

2

k then

MISE ˆµ

k

2λ

2λ

+

1

Let µ

(

u

)

has a finite number of jumps. If

K

(

k

) =

1
2

log

2

k then

MISE ˆµ

k

1

2

the smoother nonlinearity the faster convergence

the rate can be established also for discontinuous
nonlinearities!

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Kernel estimate

A generic kernel estimate

The algorithm based on kernels has the generic form

ˆµ

(

u

) =

k

l

=

1

y

l

·

K



u

u

l

h

(

k

)



k

l

=

1

K



u

u

l

h

(

k

)



where

K is so called kernel function.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example – rectangular kernel

Rectangular kernel

Using rectangular (uniform) kernel,

K

(

u

) =

I

[

0,1

)

(

u

)

, we obtain a

simple estimate

ˆµ

(

u

) =

l

L

y

l

#L

where

L

=

{

l : u

l

∈ [

u

h

(

k

)

, u

+

h

(

k

))

}

Other kernels: Epanechnikov, Gauss, Cauchy

. . .

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Convergence & rates

Convergence

If

h

(

k

) →

0 and k

·

h

(

k

) →

∞ then

MISE ˆµ

0 as k

∞.

Convergence rate

Let λ be a number of derivatives of µ. If h

(

k

) =

k

1

2λ

+

1

then

MISE ˆµ

k

2λ

2λ

+

1

.

the smoother nonlinearity the faster convergence

the rate can be established for smooth nonlinearities only

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Class of systems

The class of systems to which the above algorithms can be
directly includes many popular structures like:

Hammerstein system,
parallel system,
Uryson system, etc.

For instance, for Hammerstein system we have

y

k

=

µ

(

u

k

)

z

}|

{

γ

0

m

(

u

k

) +

ξ

k

z

}|

{

i

=

1

γ

i

[

m

(

u

k

i

) −

Em

(

u

1

)] +

z

k

=

µ

(

u

k

) +

ξ

k

+

z

k

m

(u)

¹

(u)

{ }

i

°

u

k

u

k

y

k

y

k

z

k

» +z

k

k

Hammerstein system

A ‘static’ system

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Examples of admissible dynamic nonlinear systems

m(u)

u

k

y

k

{ }

i

°

´(u)

{ }

i

¸

z

k

m(u)

{ }

i

°

uk

y

k

z

k

m(u)

u

k

{ }

i

°

´(u)

{ }

i

¸

z

k

y

k

z

k

,m

..

.

..

.

Multichannel system

Uryson system

Parallel system

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

A censored (kernel) sample-mean approach
to Wiener system identification

k

u

k

y

k

z

k

x

m

{ }

0

j

j

l

¥

=

Figure:

Wiener system

y

k

=

µ

j

=

0

λ

j

u

k

j

!

+

z

k

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Assumptions

(A1)

{

u

k

}

– i.i.d., bounded (

|

u

k

| <

u

max

) random process

(A1a) there exists a p.d.f. of the input ϑ

u

(

u

k

)

, which is a

continuous and strictly positive function in the estimation points

x,

i.e., ϑ

u

(

x

) >

0. or

(A1b) It holds that

P

(

u

k

=

x

) >

0 if u

k

has discrete distribution.

(A2) The unknown impulse response

{

λ

j

}

j

=

0

of the linear IIR filter

is bounded from above as follows


λ

j


6

c

·

λ

j

where λ

∈ (

0, 1

)

is a priori known constant.

(A3) The nonlinearity µ

(

x

)

is an arbitrary function, which is

continuous almost everywhere on

x

∈ (−

u

max

, u

max

)

(in the sense

of Lebesgue measure).
(A4) The output noise

{

z

k

}

is a zero-mean ergodic process, which

is independent of the input

{

u

k

}

.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

The algorithm

b

µ

N

(

x

) =

N

k

=

1

y

k

·

K



k

(

x

)

h

(

N

)



N

k

=

1

K



k

(

x

)

h

(

N

)



where

k

(

x

) , |

u

k

x

|

λ

0

+

|

u

k

1

x

|

λ

1

+

|

u

k

2

x

|

λ

2

+

...

. . .

+



u

k

S

(

N

)−

1

x



λ

S

(

N

)−

1

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Parametric-nonparametric approach
to Hammerstein system identification

Assumptions

A1:

|

u

k

| 6

u

max

,

p.d.f. ν

(

u

)

A2:

|

µ

(

u

)

| 6

w

max

A3:

i

=

0

|

γ

i

| <

A4: µ

(

u

0

)

known for some

u

0

(let

u

0

=

0) and γ

0

=

1

Z5:

z

k

=

i

=

0

ω

i

ε

k

i

{

ε

k

}

– i.i.d., independent of

{

u

k

}

,

Eε

k

=

0,

|

ε

k

| 6

ε

max

{

ω

i

}


i

=

0

– unknown,

i

=

0

|

ω

i

| <

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Parameter knowledge

k

u

k

y

k

z

k

w

( )

*

,c

u

μ

{ }

0

i

i

γ

=

k

v

we are given the formula µ

(

u, c

)

, such that µ

(

u, c

) =

µ

(

u

)

,

where

c

= (

c

1

, c

2

, ..., c

m

)

T

– true parameters

µ

(

u, c

)

– differentiable with respect to

c

for each

u

∈ [−

u

max

, u

max

]

k5

c

µ

(

u, c

)

k 6

G

max

<

∞,

c

∈ C(

c

)

c

is identifiable, i.e. there exist such sequence

u

1

, u

2

, ..., u

N

0

that

µ

(

u

n

, c

) =

µ

(

u

n

, c

)

,

n

=

1, 2, ..., N

0

c

=

c

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Estimation of the static characteristic

Q

N

0

(

c

) =

N

0

n

=

1

[

w

n

µ

(

u

n

, c

)]

2

c

=

arg min

c

Q

N

0

(

c

)

Stage 1: On the basis on

M pairs

{(

u

k

, y

k

)

}

M
k

=

1

, for

N

0

fixed

points

{

u

n

; n

=

1, 2, ..., N

0

}

estimate

{

w

n

=

µ

(

u

n

, c

)

; n

=

1, 2, ..., N

0

}

b

w

n,M

=

b

R

M

(

u

n

) −

b

R

M

(

0

)

Stage 2: Optimize the following criterion

b

Q

N

0

,M

(

c

) =

N

0

n

=

1

[

b

w

n,M

µ

(

u

n

, c

)]

2

with respect to

c and take the

b

c

N

0

,M

as the estimate of

c

.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Limit properties

If the system is identifiable then

δ

· k

c

c

k

2

6

Q

N

0

(

c

) 6

D

· k

c

c

k

2

Theorem

Assume that

b

c

N

0

,M

is unique and

b

c

N

0

,M

,

c

C for each M, where

C is bounded convex set in R

m

. If in stage 1

b

R

M

(

u

n

) =

R

(

u

n

) +

O

(

M

τ

)

in probability as

M

for

n

=

1, 2, ..., N

0

and for

u

n

=

0 then

b

c

N

0

,M

=

c

+

O

(

M

τ

)

in probability as

M

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Prior knowledge of the linear dynamics

k

u

k

y

k

z

k

w

( )

μ

( )

( )

1

1

B q

A q

k

v

k

ε

{ }

0

i i

ω

=

v

k

=

b

0

w

k

+

...

+

b

s

w

k

s

+

a

1

v

k

1

+

....

+

a

p

v

k

p

θ

=

(

b

0

, b

1

, ..., b

s

, a

1

, a

2

, ..., a

p

)

T

ϑ

k

=

(

w

k

, w

k

1

, ..., w

k

s

, y

k

1

, y

k

2

, ..., y

k

p

)

T

y

k

=

ϑ

T

k

θ

+

z

k

,

z

k

=

z

k

a

1

z

k

1

...

a

p

z

k

p

Y

N

=

Θ

N

θ

+

Z

N

,

Θ

N

= (

ϑ

1

, ..., ϑ

N

)

T

,

Z

N

= (

z

1

, ..., z

N

)

T

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Nonparametric instrumental variables

b

θ

(

IV

)

N,M

= (

b

Ψ

T

N,M

b

Θ

N,M

)

1

b

Ψ

T

N,M

Y

N

where

b

Θ

N,M

=

(

b

ϑ

1,M

, ..., b

ϑ

N,M

)

T

b

ϑ

k,M

=

(

b

w

k,M

, ...,

b

w

k

s,M

, y

k

1

, ..., y

k

p

)

T

b

Ψ

N,M

=

(

b

ψ

1,M

, ..., b

ψ

N,M

)

T

b

ψ

k,M

=

(

b

w

k,M

, ...,

b

w

k

s,M

,

b

w

k

s

1,M

, ...,

b

w

k

s

p,M

)

T

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Limit properties (1)

Theorem

If the estimate b

R

M

(

u

)

is bounded, converges to

R

(

u

)

, and the

estimation error in the points

u

∈ {

0, u

k

r

; for k

=

1, 2, ..., N and

r

=

0, 1, ..., s

+

p

}

behaves like



b

R

M

(

u

) −

R

(

u

)



=

O

(

M

τ

)

in probability

then for

NM

τ

0 the following conditions are fulfilled

(a’)

Plim

M,N



1

N

b

Ψ

T

N,M

b

Θ

N,M



exists and is not singular

(b’)

Plim

M,N



1

N

b

Ψ

T

N,M

Z

N



=

0

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Limit properties (2)

Theorem

Under assumptions of Theorem 2 it holds that

b

θ

(

IV

)

N,M

θ in probability

as

N, M

∞, if NM

τ

0. In particular, for M

N

(

1

+

α

)

/τ

,

α

>

0, the asympptotic rate of convergencehas the form




b

θ

(

IV

)

N,M

θ




=

O

(

N

min

(

1

2

,α

)

)

in probability

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Optimal instrumental variables

(

IV

)

N

(

Ψ

N

)

,

b

θ

IV
N

θ

Z

N

,

1

N

Z

N

z

max

Q

(

Ψ

N

)

,

max

k

Z

N

k

2

1



(

IV

)

N

(

Ψ

N

)



2

2

Theorem

In Hammerstein system, for each admissible

Ψ

N

itholds that

lim

N

Q

(

Ψ

N

) >

lim

N

Q

(

Ψ

N

)

with probability

1

where
Ψ

N

= (

ψ

1

, ψ

2

, ..., ψ

N

)

T

,

ψ

k

= (

w

k

, ..., w

k

s

, v

k

1

, ..., v

k

p

)

T

.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Approximate realization

b

ψ

k,M

= (

b

w

k,M

,

b

w

k

1,M

, ...,

b

w

k

s,M

,

b

v

k

1,M

,

b

v

k

2,M

, ...,

b

v

k

p,M

)

T

b

v

k,M

=

F

i

=

0

b

γ

i,M

b

w

k

i,M

b

γ

i,M

=

b

κ

i,M

/

b

κ

0,M

,

b

κ

i,M

=

1

M

M

i

k

=

1

(

y

k

+

i

y

)(

u

k

u

)

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Summary

Consistent estimates in the presence of colored noise

Problem decomposition with use of nonparametric methods

Broad class of models (non-linear-in-parameters + IIR)

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Semiparametric algorithm – assumptions

The nonlinear characteristic

m

(

u

)

can be an arbitrary

function, square integrable, and e.g.:

differentiable
continuous
piecewise-smooth

There is a set of input-output measurements

{

u

l

, y

l

}

,

l

=

1, . . . , k.

There is a polynomial model µ

p

(

u

)

of order

p

1 of the

nonlinearity µ

(

u

)

; e.g. hard-wired, or taken from Matlab

System Identification toolbox.

Remark

The model can offer only crude approximations when the genuine
nonlinearity turns out to be e.g. a piecewise smooth function with
discontinuities.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Additive regression

Having, by assumption, the polynomial model µ

p

(

u

)

, we are

interested in the remaining part:

µ

r

(

u

) =

µ

(

u

) −

µ

p

(

u

) =

E

(

y

k

|

u

k

=

u

) −

µ

p

(

u

)

which will further be referred to as residual nonlinearity.

The polynomial model µ

p

(

u

)

can exactly be represented as a

’crude’ wavelet approximation

µ

p

(

u

) =

p

1

i

=

0

α

i

·

u

i

=

2

M

1

n

=

0

α

p
Mn

·

ϕ

Mn

(

u

)

where α

p
Mn

= h

˜µ

p

, ϕ

Mn

i

.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Wavelet estimate of a residual function

The estimate is a version of the presented wavelet estimate

ˆµ

r

(

u

) =

2

M

1

n

=

0

ˆα

Mn

·

ϕ

Mn

(

u

) +

K

1

m

=

M

2

m

1

n

=

0

ˆβ

mn

·

ψ

mn

(

u

)

where the expansion coefficient estimates are computed in a
convenient on-line fashion

"

ˆα

(

k

+

1

)

Mn

ˆβ

(

k

+

1

)

mn

#

=

"

ˆα

(

k

)

Mn

ˆβ

(

k

)

mn

#

+ (

y

k

+

1

y

l

+

1

)



Φ

Mn

(

u

k

+

1

) −

Φ

Mn

(

u

l

)

Ψ

mn

(

u

k

+

1

) −

Ψ

mn

(

u

l

)



where

Φ

Mn

(

u

)

and

Ψ

mn

(

u

)

are antiderivatives of ϕ

Mn

(

u

)

and ψ

mn

(

u

)

.

The algorithm starts with

"

ˆα

(

1

)

Mn

ˆβ

(

1

)

mn

#

=



α

p
Mn

0



and

{(

u

0

=

0, y

0

=

0

)

,

(

u

1

=

1, y

1

=

0

)

}

.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Convergence & rates

Convergence rate

Let λ be a number of derivatives of µ. If K

(

k

) =

1

2λ

+

1

log

2

k then

MISE ˆµ

k

2λ

2λ

+

1

Let µ

(

u

)

has a finite number of jumps. If

K

(

k

) =

1
2

log

2

k then

MISE ˆµ

k

1

2

the smoother nonlinearity the faster convergence (the same
as for polynomials)

the rate can be established also for discontinuous
nonlinearities!

the convergence holds regardless the actual type of the
pre-model µ

p

(

u

)

, be it regular or orthogonal.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example - Legendre polynomial model and Haar wavelet
amendment

The nonlinearities

m

(

u

) =

5

(

u

5

u

3

)

and

m

(

u

) =

1 if

u

<

3/8

4x

2 if 3/8

u

<

5/8

1 if 5/8

u

The model (based on Legendre polynomial of order

p

=

4)

µ

p

(

u

) =

4

i

=

0

α

i

p

i

(

u

)

where α

i

=

h

µ

n

, p

i

i

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Example – simulation results

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

y

m

mu

mu_p

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

y

m

mu

mu_p

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Final conclusions

Parametric and nonparametric algorithms complete each other
rather than compete

. . .

The choice of the algorithm type can separately be made
appropriately to a different a priori knowledge available for
either of the system block.

The convergence of the algorithms can formally be shown for
virtually all nonlinear characteristics.

Semiparametric algorithms benefit from advantages of
parametric and nonparametric ones.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

A discovery of Ceres

Beginnings. . .

Ceres was spotted by G. Piazzi as a result of an exhaustive
search in an attempt to verify Titius-Body rule (ad hoc
model) governing the distance of the Solar system objects
from Sun).

The observation of its position were recorded yet no orbit
parameters had been established.

The dwarf-planet was lost after traversing behind Sun.

Several astronomers (Body, von Zach, Olbers) tried to
determine the orbit and failed

. . .

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

A discovery of Ceres

Towards better models. . .

They used a wrong model (inappropriate a priori knowledge)
assuming circular shape of the orbit (which result in a biased
model with systematic error), and did also not correctly deal
with error in measurements.

Gauss ingeniously took into account these errors (proposing
his least squares algorithm to cope with random errors) but
also used a better model admitting elliptical orbits (e.g. the
one based on Kepler’s laws).

That the Kepler’s laws were not an ultimate model for
celestial bodies motion was discovered and explained another
100 years later by another genius, Albert Einstein, whose
general relativity theory finally explained Mercury’s orbit
anomalies.

background image

Introduction

Nonparametric

Parametric-nonparametric

Semiparametric

Final remarks

Selected recent papers of the team

W. Greblicki.

Continuous-time Hammerstein system identification.

IEEE Transactions on Automatic Control, 2000.

Z. Hasiewicz.

Non-parametric estimation of non-linearity in a
cascade time series system by multiscale
approximation.

Signal Processing, 2001.

W. Greblicki.

Nonlinearity recovering in Wiener system driven with
correlated signal.

IEEE Transactions on Automatic Control, 2004.

Z. Hasiewicz and G. Mzyk.

Combined parametric-nonparametric identification of
Hammerstein systems.

IEEE Transactions on AC, 2004.

Z. Hasiewicz and G. Mzyk.

Hammerstein system identification by nonparametric
instrumental variables.

International Journal of Control, 2008.

Z. Hasiewicz, M. Pawlak, and P. ´

Sliwi´

nski.

Non-parametric identification of non-linearities in
block-oriented complex systems by orthogonal
wavelets with compact support.

IEEE Transactions on CAS I, 2005.

G. Mzyk.

A censored sample mean approach to nonparametric
identification of nonlinearities in Wiener systems.

IEEE Transactions on CAS II, 2007.

M. Pawlak, Z. Hasiewicz, and P. Wachel.

On nonparametric identification of Wiener systems.

IEEE Transactions on SP, 2007.

P. ´

Sliwi´

nski and Z. Hasiewicz.

Computational algorithms for multiscale
identification of nonlinearities in Hammerstein
systems with random inputs.

IEEE Transactions on SP, 2005.

P. ´

Sliwi´

nski and Z. Hasiewicz.

Computational algorithms for wavelet identification
of nonlinearities in Hammerstein systems with
random inputs.

IEEE Transactions on SP, 2008.


Document Outline


Wyszukiwarka

Podobne podstrony:
HSM konspekt
hsm,kolokwium II
hsm-wykład 9- 9.12.2009
HSM Misiuk
HSM kolokwium I
wykład hsm) 10
HSM HPM
hsm
HSM Tabela SYLABUS cw
HSM! Jaszczombiowo Maxowe
Zagadnienia z historii powszechnej, Wspólczesne doktryny polityczne SM UMK, Filozofia SM UMK, HSM SM
HSM - opracowane zagadnienia, HSM, zaliczenie
hsm, LICENCJAT - MATERIAŁY NA EGZAMIN - STOSUNKI MIĘDZYNARODOWE
HSM ciastka
opracowane zagadnienia na hsm IHOR, HSM, zaliczenie
HSM (bez podsumowania)
HSM skrót nowe
HSM cw
HSM

więcej podobnych podstron