background image

Egzamin dla Aktuariuszy z 17 czerwca 2000 r. 
 
Matematyka Finansowa 
 
Zadanie 1 
 

I tak: 

.....

2

1

2

2

1

2

+

+

=

m

m

v

m

v

m

I

 

....

2

1

3

2

2

2

1

+

+

=

m

m

m

v

m

v

m

Iv

 

m

m

m

m

m

v

v

m

v

v

m

v

I

1

1

2

2

1

2

1

1

1

....

1

1

=

ú

û

ù

ê

ë

é

+

+

=

÷

÷
ø

ö

ç

ç
è

æ

 

)

(

1

1

....

1

)

(

)

(

2

m

m

d

i

m

m

I

=

=

 

 

II tak:  

ip

v

p

i

v

n

n

=

=

1

1

 

q

n

p

p

n

i

q

i

ip

n

i

p

q

i

nv

i

a

n

n

+

=

=

+

=

+

)

1

(

)

1

(

)

1

(

)

1

(

 

III tak:  

[

]

[

]

[

]

[

]

k

t

k

t

k

m

n

t

k

m

n

t

k

n

m

t

k

n

n

k

m

m

t

k

n

n

n

k

m

m

m

t

t

k

n

t

k

m

pv

d

i

p

v

p

d

i

v

a

a

p

d

i

v

i

v

v

p

d

i

i

v

v

v

p

d

i

a

v

a

a

v

a

d

i

v

v

v

v

v

v

v

v

v

v

d

i

a

a

)

(

)

(

)

(

)

(

)

(

)

(

1

2

1

2

)

(

)

(

)

(

)

1

(

)

1

)(

(

)

1

(

)

1

(

1

1

)

(

...

...

...

....

=

+

=

=

+

=

ú

û

ù

ê

ë

é

+

=

=

ú

û

ù

ê

ë

é

+

=

+

=

=

+

+

+

+

+

+

=

+

+

+

+

+

+

&

&

&

&

 

 
 

Zadanie 2 

 
H - odpis w metodzie sum-of-the-digit  
 

roku

 

tym

-

 t

 w

odpis

 

-

 

2

1

tH

A

b

a

H

n

n

t

=

=

+

 

 

n

b

a

t

a

t

AL

)

(

)

(

=

 

1

)

)(

1

2

(

)

1

(

)

(

2

2

1

2

)

(

+

+

=

+

+

=

n

b

a

t

n

a

n

n

b

a

t

t

n

a

t

AS

 

Minimum jest przyjmowane dla t=n/2 

background image

Zadanie 3 

 

10

Xa

D

=

 

obliczone

 

v

-

1

1763i

X

obliczamy

 

1763

1253

1763

)

(

1253

3

7

3

3

7

7

10

X

i

v

Xa

a

Xv

a

a

X

=

=

ïî

ï

í

ì

=

=

=

 

 

1475

)

10

(

10

10

10

10

=

=

=

a

X

Xa

X

D

X

ODP

 

 

Zadanie 4 

 

ò

=

=

3

0

3

1

1

9

dt

te

R

t

 

4

2

0

2

1

2

=

=

ò

dt

te

R

t

 

25

,

2

2

1

=

R

R

 

 

Zadanie 5 

 

koniec

 

na

 

ś

rodki

 

-

 

50

1000

1000

50

....

)

02

,

1

(

50

02

,

0

;

20

19

s

P

+

=

+

+

+

=

 

854

1

,

1

50

1000

1

,

1

10

02

,

0

;

20

10

+

=

=

s

K

P

K

 

 

Zadanie 6 

 

6

5

5

4

3

2

6

5

4

3

2

5

11

11

12

13

14

15

11

12

13

14

15

16

v

a

v

v

v

v

v

v

v

v

v

v

v

K

+

=

+

+

+

+

+

=

 

6

6

6

5

11

17

11

16

v

a

v

a

ODP

=

=

&

&

 

 

Zadanie 7 

 

[

]

k

k

k

v

v

k

kv

v

k

k

k

v

k

v

k

kv

d

+

+

+

+

+

+

+

=

....

)

1

(

)

1

(

....

)

2

(

3

)

1

(

2

2

3

2

 

[

]

[

]

k

k

v

k

k

k

v

k

k

k

v

k

v

k

kv

L

)

1

(

)

2

(

)

1

(

....

)

2

(

3

)

1

(

2

1

3

2

+

+

+

+

+

=

 

1

4

3

2

1

2

)

1

(

...

)

2

(

3

)

1

(

2

+

+

+

+

+

+

=

k

k

v

k

v

k

v

k

v

k

kv

Lv

 

[

]

1

3

2

)

2

2

(

...

)

4

(

)

2

(

)

1

(

+

+

+

+

+

=

=

k

k

kv

v

k

k

v

k

v

k

kv

v

L

D

 

[

]

[

]

2

1

4

3

2

)

2

2

(

)

4

2

(

....

)

4

(

)

2

(

+

+

+

+

+

+

+

=

k

k

k

kv

v

k

k

v

k

k

v

k

v

k

kv

Dv

 

2

2

1

1

3

2

2

)

2

(

2

....

2

2

)

1

(

+

+

+

+

+

=

+

=

k

k

k

k

k

k

kv

va

kv

kv

v

k

kv

v

v

v

kv

v

D

 

 

k

k

k

k

k

k

k

a

k

i

d

kv

va

kv

M

L

v

kv

va

kv

L

v

kv

va

kv

D

+

=

+

=

+

=

+

+

+

2

2

2

2

2

2

)

1

(

2

1

2

 

 

background image

k

k

v

v

v

k

kv

M

+

+

+

+

=

1

2

2

....

)

1

(

 

i

a

k

M

k

a

k

v

v

v

v

M

k

k

k

k

=

=

+

+

+

=

1

....

)

1

1

(

 

 
Z tego wynika: 
 

[

]

21

5

100

100

105

1

)

1

(

1

)

1

(

1

1

)

1

(

)

1

(

)

1

(

2

2

)

1

(

1

)

1

(

)

1

(

1

)

1

(

2

)

1

(

2

)

1

(

1

1

1

1

1

1

=

=

+

 →

ú

û

ù

ê

ë

é

+

+

+

+

+

ú

û

ù

ê

ë

é

+

+

+

+

+

=

=

+

+

+

+

+

+

+

+

=

=

+

+

+

+

+

+

i

i

i

k

i

k

i

i

i

ik

i

i

i

k

k

i

i

k

i

i

i

k

i

ki

i

i

i

i

k

M

L

d

k

k

k

k

k

k

k

k

k

k

k

 

bo wyra

Ŝ

enia w nawiasie kwadratowym d

ą

z

ą

 do 0. 

 
 

Zadanie 8 

 

n

i

n

i

a

C

P

2

;

2

)

1

(

1500

2

+

+

=

 

n

n

i

a

C

P

2

2

)

1

(

1500

1500

200

1

1

+

+

+

=

 

P1-P=75 
 

Z tego wynika, 

Ŝ

e: 

7

,

0

  

i

  

10

75

2

15

2

2

2

=

=

=

n

n

n

v

a

a

 

( )

(

)

( )

1630

1500

1

1500

200

7

1500

1500

200

7

2

2

2

2

2

2

4

+

+

=

+

=

n

n

n

n

n

v

v

a

v

a

ODP

 

 

Zadanie 9 

 

[

]

[

]

[

]

[

]

2795

04

,

1

02

,

1

04

,

1

02

,

1

04

,

1

02

,

1

04

,

1

02

,

1

02

,

0

1

)

02

,

0

1

(

150

1

...

02

,

1

04

,

1

150

....

....

02

,

1

04

,

1

150

02

,

1

02

,

1

02

,

1

150

4

3

3

6

2

9

12

3

2

3

11

12

13

14

+

+

+

+

+

=

=

+

+

+

+

+

+

+

=

ODP

 

 

Zadanie 10 

 

....

....

4

2

2

+

+

=

+

+

=

v

v

B

v

v

A

 

 
Z tego wynika: 
 

[

]

[

]

[

]

0

1

)

1

2

2

(

2

0

1

)

1

(

1

)

1

(

2

1

)

1

(

2

1

)

1

(

1

1

2

2

2

2

2

=

+

=

+

+

+

=

+

i

i

i

i

i

i

i

i

i

i

i

 

 

background image

4

,

0

1

2

2

2

3

2

2

1

0

3

   

9

2

1

=

+

=

<

=

=

i

i