Weryfikowanie
hipotez
wykład 4
Podobnie jak testy w życiu codziennym,
test statystyczny też ma jednobitowy
wynik: jest OK albo nie jest OK
Wąchamy wczorajszą wędlinkę i kierujemy ją
na stół albo pod stół (do kosza;-)
Nie ma trzeciej drogi, chyba że mamy psa,
który nam się opatrzył.
Zwróćmy przy okazji uwagę na to, że przy
testowaniu możemy popełnić dwa rodzaje
błędów:
możemy wyrzucić dobrą szynkę
jest to błąd pierwszego rodzaju
albo zjeść zepsutą
błąd drugiego rodzaju
Kalkulacja ekonomiczna kosztu tych błędów jest
bardzo ważna przy projektowaniu testu, aczkolwiek
może ona nie być łatwa do przeprowadzenia
Przykładowo:
W zarządzaniu jakością często stawiane jest
pytanie
czy wartość określonej statystyki uzyskana z
próbki losowej (szczególnie jeśli próbka ma
małą liczność), pozwala sądzić, że odpowiada
ona wartości wymaganej (spodziewanej)
lub też, czy uzyskana w wyniku działań
doskonalących poprawa jest tylko pozorna
wynika z małej liczby pomiarów
sprawdzających czy rzeczywista
Odpowiedzi na tak i podobnie postawione pytanie
uzyskuje się w tzw. testach statystycznych
Stosuje się dwie grupy testów:
parametryczne i nieparametryczne
stosowanie pierwszych wymaga przyjęcia
założeń o postaci rozkładu testowanej
zmiennej losowej oraz znajomości wybranych
statystyk
testy nieparametryczne takich założeń nie
wymagają, ale nie są tak mocne jak
parametryczne
Hipotezy statystyczne
Hipoteza statystyczna to każde
przypuszczenie dotyczące rozkładu zmiennej
losowej weryfikowane na podstawie n-krotnej
realizacji tej zmiennej
Wyróżniamy:
Hipotezy
parametryczne i nieparametryczne
proste i złożone
Weryfikowanie hipotez
Hipotezą zerową, oznaczoną przez H0, jest
hipoteza w wartości jednego z parametrów
populacji (lub wielu)
Tę hipotezę traktujemy jako prawdziwą, dopóki nie
uzyskamy informacji statystycznych dostatecznych do
zmiany naszego stanowiska
Hipotezą alternatywną, oznaczoną przez H1,
jest hipoteza przypisująca parametrowi
(parametrom) populacji wartość inną niż
podaje to hipoteza zerowa
Hipoteza zerowa:
często opisuje sytuację, która istniała do tej
pory lub jest wyrazem naszego przekonania,
które chcemy sprawdzić
Sprawdzenia dokonuje się korzystając z
informacji zawartej w próbie losowej
Sprawdzianem lub statystyką testu
nazywamy statystkę z próby, której wartość
obliczona na podstawie wyników obserwacji
jest wykorzystywana do ustalenia czy możemy
hipotezę zerową odrzucić czy jej odrzucić nie
możemy
Przykład 1:
Firma rozwożąca paczki zapewnia, że
średni czas dostarczenia przesyłki od
drzwi klienta do odbiorcy wynosi 28
minut. By sprawdzić to stwierdzenie
pobrano próbę n=100 przesyłek i
obliczono średni czas dostawy 31,5 minut
oraz odchylenie standardowe 5 minut.
H0 : = 28
1-ą = 0,95
H1 : `" 28 = 5
zbudujmy 95% przedział ufności dla średniej:
5
x ą uą / 2 = 31,5 ą 1,96 = [30,52; 32,48]
n 100
Jeżeli mamy 95% ufności, że średni czas dostawy
zawiera się w przedziale [30.52; 32.48] minuty,
to mamy 95% zaufania, że czas ten nie znajdzie
się poza tym przedziałem.
Wartość sprawdzana: 28 minut, leży poza tym
przedziałem, zatem odrzucamy hipotezę
zerową.
Czego się nauczyliśmy z przykładu?
Po pierwsze: przy weryfikowaniu testów można
budować przedział ufności wokół wartości
statystyki z próby i sprawdzać, czy
weryfikowana wartość parametru należy do
przedziału
95% przedział ufności
32,48
31,5
28
30,52
ź0 x
Z drugiej strony:
Można jako centrum traktować średnią populacji
i sprawdzać wartość statystyki z próby względem
przedziału ufności wokół parametru populacji
s 5
ź0 ą 1,96 = 28 ą 1,96 = [27,02; 28,98]
n 100
Wartość średnia z próby =31,5, zatem nie należy
do przedziału ufności. Hipotezę zerową
odrzucamy.
95% przedział ufności
32,48
30,52 31,5
28
x
Średnia z próby znajduje
się poza obszarem
95% obszar
przyjęcia
przyjęcia
ź0=28
x
28,98
27,02
Interpretacja graficzna
rozkład populacji
Pytanie: Czy ta średnia może
pochodzić z populacji o średniej ź0 i
odchyleniu ?
x
Jeśli średnia z próby leży powyżej
ź0
granicy, to przypuszczenie że
populacja ma średnią ź0 musi
uą / 2
zostać odrzucone
n
Standaryzowana forma testu statystycznego
rozkład standaryzowany
Standaryzujemy średnią z próby,
czyli obliczamy statystykę
(sprawdzian)
x -ź0
Jeżeli obliczona wartość statystyki
/ n
0
leży poniżej granicy uą/2, to nie ma
podstaw do odrzucenia hipotezy
zerowej
uą / 2
Wracając do przykładu:
H0 : = 28
31,5 - 28
u = = 7
5 / 100
H1 : `" 28
Obszar krytyczny: Rą = (-"; -1,96) *" (1,96; +")
obszar nieodrzucenia
obszar
obszar
wartość
odrzucenia
odrzucenia
sprawdzianu
znajduje się w
Miara pola = 0,95
polu odrzucenia
Miara pola = 0,025 Miara pola = 0,025
-1,96 1,96
uz = 7,0
0
Prawdopodobieństwo odrzucenia/przyjęcia
hipotezy
ą = P(H0odrzucona /H0prawdziwa)
= P(H0nieodrzucona /H0 falszywa)
Hipoteza
Prawdziwa Fałszywa
Decyzja
Właściwe Błąd II-go
postępowanie rodzaju
Przyjąć
1-ą
Błąd I-go Właściwe
rodzaju postępowanie
Odrzucić
ą 1-
ponieważ założyliśmy, że hipoteza zerowa
odzwierciedla nasze przekonanie, to chcemy
śledzić pradwopodobieńswto I-go rodzaju
świadomość, że istnieje małe
prawdopodobieństwo popełnienia błędu I-go
rodzaju, czyli odrzucenia hipotezy zerowej, gdy
nie powinna być ona odrzucona, czyni
odrzucenie hipotezy zerowej wnioskiem
stanowczym
Nie można tego powiedzieć o akceptowaniu
(czyli nie odrzuceniu) hipotezy zerowej
Jeżeli akceptujemy hipotezę zerową (nie
odrzucamy jej) czujemy tylko, że nie mamy
podstaw do jej odrzucenia
Test dwustronny dla średniej w populacji dla
dużej próby
H0: ź = ź0
H1: ź `" ź0
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
x - ź0
Statystyka testu: u = n
Obszar krytyczny: Rą = (-"; -uą/2) *" (uą/2; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka u należy do Rą
Test dwustronny dla średniej w populacji dla
małej próby
H0: ź = ź0
H1: ź `" ź0
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
x - ź0
Statystyka testu: t = n
ma rozkład t o n-1 stopniach swobody
s
Obszar krytyczny: Rą = (-"; -tą/2) *" (tą/2; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka u należy do Rą
Test dla porównania dwóch wartości oczekiwanych
dwóch populacji przy dużych próbach
dwie badane populacje mają rozkład normany
H0: ź1= ź2
H1: ź1 `" ź2 N(ź1, 1) oraz N(ź2, 2)
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
x - x2
1
u =
Statystyka testu:
2
1 2
2
+
n1 n2
Obszar krytyczny: Rą = (-"; -uą/2) *" (uą/2; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka u należy do Rą
Test dla porównania dwóch wartości oczekiwanych
dwóch populacji przy małych próbach
H0: ź1= ź2 dwie badane populacje mają rozkład normalny
H1: ź1 `" ź2 N(ź1, 1) oraz N(ź2, 2), nieznane odchylenia
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
x - x2
1
Statystyka testu:
t =
2
# ś#
(n1 -1)s1 + (n2 -1)s2 ś# 1 1
2
ź#
+
ś#
n1 + n2 - 2 n1 n2 ź#
# #
Obszar krytyczny: Rą = (-"; -tą/2) *" (tą/2; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka u należy do Rą
Test hipotezy o frakcji w populacji w przypadku dużej
próby
jeśli próba jest duża, to rozkład frakcji w próbie
H0: p= p0
jest rozkładem normalnym o średniej p i
odchyleniu pq/n
H1: p `" p0
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
p - p0
Statystyka testu:
u =
p0q0 /n
Obszar krytyczny: Rą = (-"; -uą/2) *" (uą/2; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka u należy do Rą
Testy jednostronne
Wybór rodzaju testu podyktowany jest potrzebą
działania
Jeżeli działanie (np. korygujące) będzie podjęte,
gdy parametr przekroczy pewną wartość a, to
stosujemy test prawostronny:
H0: źd"a
H1: ź>a
Jeżeli działanie będzie podjęte, gdy parametr
przyjmie wartość mniejszą niż a, to stosujemy test
lewostronny:
H0: źe"a
H1: ź
H0: ź=a H0: źd"a
H1: ź`"a H1: ź>a
5% obszar
odrzucenia
95% obszar
nieodrzucenia
1,64
Przykład 4:
Na opakowaniu pewnego towaru znajdujemy napis: przeciętna
waga 12g .
Przypuśćmy, że konsumenci przysyłają do Stowarzyszenia
Konsumentów informacje, że waga netto towaru jest mniejsza od
zadeklarowanej na opakowaniu. Stowarzyszenie chce sprawdzić
hipotezę, że przeciętna waga netto towaru wynosi 12g, przy
hipotezie alternatywnej, że waga netto jest przeciętnie mniejsza.
Pobrano losowa próbę 144 opakowań i stwierdzono, że przeciętna
waga netto towaru wynosi 11,8g przy odchyleniu standardowym
6g. Czy te wyniki mogą być podstawą przyjęcia, że producent
niedostatecznie wypełnia opakowania?
H0: ź=12
H1: ź<12
u = (11,8-12)*0,5=-0,4
Rą=0,05: (-"; -1,65)
Rą=0,01: (-"; -2,32)
Wartość sprawdzianu znajduje się w obszarze
nie odrzucenia.
Brak dostatecznych podstaw do tego, aby
producentowi zarzucić niedoważanie towaru.
Test hipotezy o wariancji populacji
bardzo często chcemy dowiedzieć się czegoś o
wariancji w populacji 2:
np. czy wariancja liczby sztuk wyrobu nie
przekroczyła pewnej granicy?
np. o wariancji czasu obróbki na linii (powinna
być niewielka, aby nie tworzyły się przestoje)
z reguły obawiamy się, że wariancja w
populacji przekroczy pewien poziom
dlatego z reguły stosujemy test prawostronny
Test hipotezy o wariancji w populacji
H0: d" 0
H1: > 0
Poziom istotności: ą (zazwyczaj przyjmowany: 0,05; 0,01)
Statystyka testu:
(n - 1)s2
2 =
2
0
Obszar krytyczny: Rą = (ą; +")
Reguła decyzyjna: hipotezę zerową odrzucić, jeśli
statystyka 2 należy do Rą
46,98
50,89
Prawdopodobieństwo błędu II-go rodzaju
w testach zakładamy błąd ą
co z błędem ?
Stan rzeczy
H0: niewinna
H1: winna
H0 H1
słuszna
H0
decyzja
Decyzje
słuszna
ą
H1
decyzja
bład I-go rodzaju jest poważniejszy
Prawdopodobieństwo błędu II-go rodzaju
niestety prawdopodobieństwo jest
trudne do wyznaczenia a priori
zależy ono od tego, którą z możliwych
wartości przyjmie inetersujący nas
parametr
przykładowo dla testów dotyczących ź
błąd jest funkcją ź: (ź)
Przykład wyznaczania :
n = 100
H0: ź= 60 ą = 0,05
= 20
H1: ź= 65
Mamy do czynienia z hipoteza prostą. Albo dojdziemy do wniosku, że
średnia populacji jest równa 60, albo że jest równa 65.
W praktyce takie sytuacje zdarzają się rzadko.
ą
ź0 = 60
ź1 = 65
63,29
C = ź0 + 1,645 = 63,29
n
Jakie jest prawdopodobieństwo ?
ą = P(X > C/ź = ź0)
= P(X < C/ź = ź1)
ą z góry ustalamy, zatem :
X - ź1 C - ź1
= P(X < C/ź = ź1) = P( < ) = P(U < -0,855) = 0,1963
/ n / n
Zatem prawdopodobieństwo przyjęcia błędnej hipotezy, że średnia
w populacji jest 60, podczas gdy w rzeczywistości wynosi 65, jest
równe 0,1963.
Przeprowadzony test dopuszcza 5% ryzyko odrzucenia Ho gdy jest
ona prawdziwa i 19,63% ryzyko przyjęcia Ho gdy jest ona fałszywa.
Moc testu
Mocą testu hipotezy statystycznej jest
prawdopodobieństwo odrzucenia hipotezy
zerowej, gdy jest ona fałszywa.
moc testu = 1-
W przykładzie: moc testu=1-0,1963=0,8037
Mamy 80,37% szans, że odrzucimy Ho gdy
średnia populacji jest równa 65, a nie 60.
Dla testów złożonych
przykładowo w przypadku testu jednostronnego
H0: źd" 60
Jak zdefiniować moc testu w takiej
H1: ź> 60
sytuacji?
Moc testu = P( odrzucenia Ho/ Ho jest fałszywa )
W przykładzie Ho może być fałszywa na nieskończenie wiele
sposobów: 61, 62, 67, 72.893 itd...
Moc testu dla wybranych wartości ź1
załóżmy liczebność próby n=100, =20, ą=0.05
ź1 Moc=1-
61 0,8739 0,1262
62 0,7405 0,2595
63 0,5577 0,4423
64 0,3613 0,6387
65 0,1963 0,8037
66 0,0877 0,9123
67 0,0318 0,9682
68 0,0092 0,9908
69 0,0021 0,9979
Własności mocy testu:
1. Moc zależy od odległości między wartością parametru
zakładaną w hipotezie zerowej a prawdziwą wartością
parametru. Im większa odległość tym większa moc.
2. Moc zależy od wielkości odchylenia standardowego w
populacji. Im mniejsze odchylenie tym większa moc.
3. Moc zależy od liczebności próby. Im liczniejsza próba,
tym większa moc.
4. Moc zależy od poziomu istotności testu. Im niższy
poziom istotności tym mniejsza moc testu.
nie możemy kontrolować punktu 1 i 2
kształtujemy jedynie pkt. 3 i 4
Podsumowując:
w przypadku prowadzenia testu
statystycznego dla parametru populacji
posługiwaliśmy się:
przedziałem ufności (wokół ź0 lub xśr)
standaryzowanym przedziałem
Istnieje 3 droga: wyznaczanie wartości
prawdopodobieństwa na prawo/lewo od
wartości sprawdzianu
Wartość p co to takiego?
to najniższy poziom istotności, przy którym hipoteza zerowa
mogłaby być odrzucona przy otrzymanej wartości
sprawdzianu
to prawdopodobieństwo otrzymania takiej wartości
sprawdzianu, jaką otrzymaliśmy przy założeniu, że hipoteza
zerowa jest prawdziwa
Wartość p co to takiego?
H0: źd" 60 ą = 0.01
H1: ź > 60
stąd ukryt=2,326
rozkład Z
Wartość sprawdzianu u=2,5
Wartość p = miara pola na prawo od u
p = 0.0062
u=2,326
0
Interpretacja:
jeśli otrzymana wartość sprawdzianu jest mało
prawdopodobna przy założeniu, że Ho jest
prawdziwa, to hipoteza Ho powinna być
odrzucona
jeśli otrzymana wartość sprawdzianu jest dosyć
prawdopodobna (większa od 0.05; 0.1) to
powinniśmy przyjąć hipotezę Ho
Wartość p
Jest czymś w rodzaju zindywidualizowanego poziomu
istotności.
Załóżmy, że wartość p dla
Informacja dla użytkownika
wyznaczonego sprawdzianu
testu:
wynosi 0.0002
1) Ho musiałaby być odrzucona przy
ą=0.01
2) Ho musiałaby być odrzucona przy
ą=0.001 i przy wszystkich poziomach
aż do 0.0002!!
Informacja zawarta w p=0.0002 jest
bogatsza niż w stwierdzeniu, że Ho
odrzucona na poziome ą=0.05
Innymi słowy...
informacja, że wartość p=0.000003 wskazuje, że
uzyskany wynik jest wysoce nieprawdopodobny,
jeżeli Ho jest prawdziwa.
Zatem jeśli pojawiła się wartość kwantyla z p,
to zdarzenie takie silnie skłania do odrzucenia
Ho.
Wyszukiwarka
Podobne podstrony:
sdz statystyka wyklad 3Statystyka wyklad 7Statystyka wyklad 4Statystyka wyklad4nowyStatystyka wykładyStatystyka wyklad5Statystyka wyklad 8Statystyka wyklad 3Statystyka wyklad 9Statystyka1st Wyklad2Statystyka wyklad 6Statystyka WykładyStatystyka1st Wyklad6 Regresja20151012 MichalTrzesiok Statystyka wyklad2 miary statystyczne handoutStatystyka wykladyStatystyka wykładyStatystyka1st Wyklad1więcej podobnych podstron