Koła i okręgi

SCENARIUSZ LEKCJI MATEMATYKI

NAUCZYCIEL: Adrian Weredycki

KLASA: Ii (technikum)

DATA: 15.03.2010

TEMAT: Koła i okręgi.

BAZA MERYTORYCZNA:

Uczeń:

CELE:

Uczeń :



METODY: Praktyczna, poszukująca (pogadanka, dyskusja), ćwiczenia utrwalające.


ZASADY NAUCZANIA:


TOK LEKCJI:

N: Czym zajmowaliśmy się na ostatnich lekcjach?

U: Wielokątami.

N: Jakie znacie jeszcze figury, poza wielokątami?

U: Okręgi.

N: A inna figura związana z okręgiem?

U: Koła

N: Na dzisiejszej lekcji będziemy zajmowali się kołami i okręgami.

N: Co to jest okrąg?

U: To zbiór punktów płaszczyzny równoodległych od pewnego ustalonego punktu (środka okręgu).

N: A co to jest koło?

U: To zbiór punktów płaszczyzny, których odległość od środka jest mniejsza bądź równa promieniowi tego koła.

N: Dla wszystkich okręgów stosunek długości okręgu do długości jego średnicy jest taki sam:

N: Jaki jest wzór na obwód i pole koła ?

U: .

N: Rysuje na tablicy:



α











Kąt α wyznacza pewien łuk na okręgu oraz wycina pewną część koła. Otrzymaną figurę nazywamy wycinkiem koła. Jaką częścią kąta pełnego jest kąt α?

U:

N: To w takim razie jak policzyć długość łuku i pole wycinka wyznaczonego przez kąt α?

U:

N: A jak byście nazwali taką figurę?













U: Odcinkiem koła.

N: Jak policzyć pole odcinka?

U: Od pola wycinka trzeba odjąć pole trójkąta.

N: Wróćmy do naszego rysunku, jak można nazwać kąt α?

U: Kątem środkowym.

N: Co to jest kąt środkowy?

U: To taki kąt, którego wierzchołek jest środkiem okręgu.

N: Zauważmy, że na tym rysunku można wskazać jeszcze jeden kąt środkowy, którego miara wynosi .

N: Rysuje kąt wpisany. A jak nazwiemy taki kąt?

U: Kątem wpisanym.

N: Co to jest kąt wpisany?

U: To taki kąt, którego wierzchołek leży na okręgu a ramiona przecinają okrąg.

N: Ile może być kątów środkowych opartych na danym łuku?

U: Jeden.

N:A kątów wpisanych?

U: Nieskończenie wiele.

N: Przypomnijmy trzy bardzo ważne twierdzenia:

  1. Kąt wpisany ma dwa razy mniejszą miarę niż kąt środkowy oparty na tym samym łuku.

  2. Kąty wpisane oparte na tym samym łuku mają równe miary.

  3. Kąt wpisany oparty na średnicy jest kątem prostym.

Zadanie 1 str. 176

  1. Oblicz pole koła o promieniu 7. ( )

  2. Jakie pole ma koło o średnicy 12? ( )

  3. Oblicz długość okręgu o średnicy 17. ( )

  4. Jaki promień ma koło o polu 10? ( )

  5. Jaki promień ma okrąg o długości 5? ( )

  6. Oblicz obwód koła o polu 4. ( )

Zadanie 3 str.176 (po jednym przykładzie – reszta do domu)

Oblicz pola zacieniowanych figur. Przyjmij, że bok kratki ma długość 1.

Zadanie 4 str. 176

Zapisz wzór, który pozwala obliczać:

  1. Długość okręgu l, gdy dana jest jego średnica d. ( )

  2. Pole koła P, gdy dany jest jego obwód l. ( )

  3. Średnicę koła d, gdy dane jest jego pole P. ( )

  4. Obwód koła l, gdy dane jest jego pole P. ( ) (zad. dom.)


Zadanie 5 str. 177

  1. Jaką długość ma bok kwadratu, który ma takie samo pole jak koło o promieniu r? ( )

  2. Koło i kwadrat mają równe pola. Która figura ma większy obwód? Ile razy? (zad. dom.)


Wyszukiwarka

Podobne podstrony:
koła i okręgi
wy koła i okręgi
koła i okregi-Zadania
koła i okręgi, Matematyka, Liceum
Koła i okręgi
kartkowka 4 koła i okręgi, Szkoła podstawowa kl IV
koła i okregi
Koła i okręgi 3
Koła i okręgi
Okręgi i koła, Koło, okrąg
Ewolucja przez łańcuchy i okręgi 4
0 Koła i opony
Octavia 19 Zawieszenie i Koła
Plan pracy Szkolnego Koła LOP, spiżarka nauczyciela gimnazjum, opiekun SK LOP
1 kolo tofik, PWr, Podstawy telkom Krzysztofik, podstawy telekomunikacji, Podstawy telekomunikacji,
Koła 2010, pwr, air, semestr 3, Mechanika analityczna, KOŁO ĆWICZENIA (matek sp)
Okręgi wojskowe od roku 1999, wiedza o siłach zbrojnych
Opracowane zagadnienia na koło z podstaw turystyki, Notatki na koła
Sprawdzian z Koła i Okręgu, sprawdziany, Sprawdziany Matematyka

więcej podobnych podstron