background image

Egzamin dla Aktuariuszy z 31 maja 2010 r. 
 
Prawdopodobieństwo i Statystyka 
 
Zadanie 1 
 

)

3

,

0

(

  

t

dla

 

(

)

)

3

(

5

,

0

3

0

5

,

0

)

3

(

Y

X

t

y

y

f

dy

e

e

Y

X

t

Y

P

+

=

=

+

<

 

∫ ∫

=

=

<

+

t

x

t

x

y

dydx

e

e

t

Y

X

P

0 0

5

,

0

5

,

0

)

(

 

[

]

[

]

=

=

=

t

t

x

t

x

x

t

y

x

e

e

e

e

0

0

)

(

5

,

0

0

5

,

0

2

2

5

,

0

2

5

,

0

 

[

]

t

t

t

t

t

t

x

t

x

e

e

e

e

e

e

e

e

+

=

+

=

+

=

5

,

0

5

,

0

0

5

,

0

5

,

0

2

1

2

2

1

2

 

 

)

;

0

(

  

t

dla

 

t

t

Y

X

e

e

t

f

+

=

5

,

0

)

(

 

[

]

(

)

=

=

=

t

t

t

t

y

y

y

y

e

e

e

e

dy

e

e

dy

e

e

0

0

5

,

0

3

0

5

,

0

3

5

,

0

3

5

,

0

)

3

(

1

2

5

,

0

5

,

0

5

,

0

 

(

)

(

)

1

1

1

3

5

,

1

5

,

0

3

5

,

1

5

,

0

3

=

=

=

+

<

e

e

e

e

e

e

Y

X

t

Y

P

t

t

 

 

)

3

,

0

(

  

t

dla

 

(

)

1

5

,

0

)

(

5

,

1

5

,

0

3

=

=

+

e

e

t

f

t

Y

X

Y

 

(

)

[

]

=

=

=

=

=

=

=

=

=

+

3

0

3

0

5

,

0

5

,

0

5

,

1

5

,

0

5

,

0

5

,

1

5

,

0

4

2

1

5

,

0

2

1

1

5

,

0

3

t

t

t

t

t

e

te

e

e

v

u

e

v

t

u

dt

e

te

Y

X

Y

E

 

[

]

86

,

1

1

2

4

4

6

1

5

,

0

5

,

1

5

,

1

5

,

1

5

,

1

5

,

1

+

=

+

=

e

e

e

e

e

 

 
Zadanie 2 
 

(

)

(

)

=

=

=

>

<

<

<

=

=

=

=

1

1

0

0

1

0

2

0

1

)

(

,

,...,

,

)

(

k

k

k

k

k

N

N

k

N

P

X

X

X

X

X

X

X

X

X

E

k

N

P

k

N

X

E

EX

(

)

(

)

(

)

M

L

X

X

X

X

P

t

X

X

X

X

X

X

X

P

X

X

X

X

X

X

t

X

P

k

k

k

k

k

k

k

=

>

<

<

>

<

<

=

>

<

<

<

0

0

1

0

0

1

0

1

0

0

1

0

1

,...,

,

,

,...,

,

,...,

 

(

)

=

=

<

>

<

<

=

t

t

k

k

k

ds

s

t

s

t

X

s

X

s

X

s

X

P

L

0

0

1

2

1

2

2

2

1

2

1

,

,...,

,

 

background image

(

)

+

=





+

=

+

=

=

+

+

+

+

+

+

+

t

k

k

k

k

t

k

k

k

k

k

k

k

k

t

k

t

k

t

k

s

k

ts

ds

s

t

s

0

1

1

1

1

0

1

1

1

1

)

1

(

1

2

1

2

1

1

2

1

2

1

 

 

(

)

=

=

>

<

<

=

=

=

2

0

2

0

1

1

1

1

2

2

2

2

1

2

1

,

,...,

)

(

t

t

t

X

t

X

t

X

P

k

N

P

M

k

k

k

k

 

(

)

)

1

(

1

1

1

1

1

2

2

2

1

1

2

2

1

2

2

1

2

0

1

1

1

2

0

1

1

1

1

+

=

+

=





+

=

+

=

=

+

+

+

+

+

+

k

k

k

k

k

k

k

t

k

t

t

t

k

k

k

k

k

k

k

k

k

 

(

)

1

2

+

=

=

<

k

N

t

k

N

t

X

P

 

(

)

1

2

)

1

(

)

(

+

=

+

=

k

k

k

N

X

t

k

t

f

N

 

(

)

+

+

=

+

+

=

+

+

=

+

=

=

+

+

+

+

+

+

2

0

2

1

2

0

2

1

1

1

2

)

1

(

2

2

2

2

1

2

2

1

2

)

1

(

k

k

k

k

k

t

k

dt

k

t

k

N

X

E

k

k

k

k

k

k

N

 

( )

=

=

=

=

+

=

+

=

+

+

+

=

1

1

1

2

1

1

)

2

(

2

)

1

(

1

2

)

1

(

2

k

k

k

N

k

k

k

k

k

k

k

k

X

E

 

2

3

2

1

1

....

7

1

5

1

6

1

4

1

5

1

3

1

4

1

2

1

3

1

1

=

+

=

+

+

+

+

+

=

 

 
Zadanie 3 
 

(

)

(

)

(

)

(

)

Π

+

Π

=

=

=

=

=

2

exp

2

exp

2

1

2

5

,

0

exp

2

5

,

0

exp

2

1

)

(

1

2

1

2

2

1

2

1

2

2

n

i

i

n

i

i

n

n

i

i

n

i

i

n

H

m

Y

m

X

m

Y

m

X

x

λ

 

(

)

K

t

x

P

H

=

>

05

,

0

)

(

λ

 

)

(

1

K

P

ODP

H

=

=

β

 

 

(

) (

)

(

)

[

]

+

+

=

=

n

i

i

i

i

H

m

X

m

X

m

X

x

1

2

2

25

,

0

2

1

exp

)

(

λ

 

(

) (

)

(

)

[

]

+

=

n

i

i

i

i

m

Y

m

Y

m

Y

1

2

2

25

,

0

2

1

exp

 

(

)

(

)

(

)

=

+

=

=

=

=

n

i

i

i

n

i

i

n

i

i

Y

X

m

Y

m

X

1

1

1

5

,

0

2

1

exp

25

,

0

2

1

exp

25

,

0

2

1

exp

 

)

1

,

(

),

1

,

(

:

  

0

m

N

Y

m

N

X

H

przy

i

i

 

 
 

background image

(

)

(

)

n

n

nm

nm

Y

X

E

n

i

i

i

4

1

5

,

0

2

1

5

,

0

2

1

1

=

=

=

 

(

)

(

)

=

=

=

+

=

n

i

i

i

n

i

i

i

n

n

N

Y

X

n

n

n

Y

X

1

1

2

1

;

4

1

5

,

0

2

1

2

1

)

(

4

1

5

,

0

2

1

var

 

 

)

1

,

5

,

0

(

),

1

;

5

,

0

(

:

  

1

+

m

N

Y

m

N

X

H

przy

i

i

 

(

)

[

]

n

n

n

m

n

m

n

Y

X

E

n

i

i

i

4

1

5

,

0

2

1

5

,

0

)

5

,

0

(

)

5

,

0

(

2

1

5

,

0

2

1

1

=

=

+

=

=

 

(

)

n

Y

X

n

i

i

i

2

1

5

,

0

2

1

var

1

=

=

 

 

(

)

05

,

0

5

,

0

2

1

exp

1

0

=





>

=

t

Y

X

P

n

i

i

i

H

 

 

)

1

,

0

(

  

N

N

dla

 

(

)

=





+

>

+

=

+

>

=

05

,

0

2

4

1

ln

2

4

1

5

,

0

2

1

2

4

1

ln

1

0

0

n

n

t

n

n

Y

X

P

n

n

t

N

P

n

i

i

i

H

H

 



=

+

n

n

t

n

n

t

4

1

2

64

,

1

exp

64

,

1

2

4

1

ln

 

(

)

)

1

,

0

(

1

4

1

2

64

,

1

5

,

0

2

1

1

N

N

n

i

i

i

H

n

n

Y

X

P

ODP

=

=



>

=

 

913

,

0

5

,

0

41309

,

0

)

36

,

1

(

3

5

,

4

5

,

4

3

64

,

1

2

4

1

4

1

2

64

,

1

18

+

>

=

>

=

>

=

=

N

P

N

P

n

n

n

n

N

P

n

 
 
Zadanie 4 
 
A – k zmiennych większych od w 
 

(

)

=

>

=

k

i

i

i

w

y

y

f

A

P

L

1

)

(

 

 

background image

(

)

θ

θ

θ

θ

θ

θ

θ

=









=

=

>

<

+

+

t

w

x

x

dx

x

dx

x

w

X

t

X

P

w

t

w

w

t

w

1

1

1

1

1

 

(

)

1

+

=

>

θ

θ

θ

t

w

w

X

t

f

X

 

(

)

=

=

=

=

k

n

n

N

P

n

N

A

P

A

P

)

(

)

(

 

(

)

[

]

k

n

k

k

n

k

w

w

k

n

w

X

P

w

X

P

k

n

n

N

A

P









=

>

>





=

=

θ

θ

1

1

1

)

(

1

)

(

 

=

=

+

=

+





+

=

=

=





=

k

n

m

m

k

m

k

n

k

n

k

e

k

m

w

w

k

k

m

m

k

n

e

n

w

w

k

n

A

P

0

)!

(

1

1

1

!

1

1

1

)

(

λ

θ

θ

λ

θ

θ

λ

λ

=

=

+

=

=

=

0

0

!

1

1

1

!

1

1

1

1

!

!

1

m

m

m

k

k

m

k

m

k

m

w

e

w

k

e

w

w

m

k

θ

λ

θ

λ

θ

θ

λ

λ

λ

 

θ

θ

θ

λ

θ

λ

θ

λ

λ

θ

λ

λ

λ

w

k

w

k

k

w

k

k

e

k

w

e

w

k

e

e

w

k

=

=

=

!

1

!

1

!

1

1

1

 

( )

θ

λ

θ

θ

θ

λ

θ

w

k

k

i

i

k

e

k

w

y

w

L

=

+

=

!

1

1

 

( )

+

+

=

θ

θ

θ

λ

λ

θ

θ

w

k

w

k

y

w

k

L

i

!

ln

ln

ln

)

1

(

ln

ln

 

(a)

   

ˆ

0

1

ˆ

θ

θ

λ

λ

λ

kw

w

k

=

=

=

 

=

+

=

+

+

=

0

ln

ln

0

ln

ln

ln

ln

)

(

w

k

y

k

w

w

w

k

y

k

w

k

i

a

i

λ

λ

θ

λ

θ

θ

θ

 

=

=

=

+

k

i

i

i

w

k

y

k

w

k

y

k

1

ln

ln

ˆ

0

ln

ln

θ

θ

θ

θ

 

 
Zadanie 5 
 

( ) (

)

[

]

( ) (

)

[

]

( ) (

)

1

1

1

,

cov

+

+

+

=

n

n

n

n

n

n

X

Ef

X

Ef

X

f

X

f

E

X

f

X

f

 

( ) (

)

(

)

(

)

3

3

2

2

1

=

+

=

+

=

=

n

n

n

n

X

P

X

P

X

P

X

Ef

 

(

) (

)

(

)

(

)

3

3

2

2

1

1

1

1

1

=

+

=

+

=

=

+

+

+

+

n

n

n

n

X

P

X

P

X

P

X

Ef

 

( )

( )

[

]

(

)

[

]

+

+

+

=

=

+

13

12

11

1

3

2

1

p

p

p

X

P

X

f

X

f

E

n

n

n

 

 

background image

(

)

[

]

(

)

[

]

33

32

31

23

22

21

9

6

3

3

6

4

2

2

p

p

p

X

P

p

p

p

X

P

n

n

+

+

=

+

+

+

=

+

 

(

) (

)

(

)

(

)

+

=

+

=

+

=

=

+

31

21

11

1

3

2

1

p

X

P

p

X

P

p

X

P

X

Ef

n

n

n

n

 

(

)

(

)

(

)

[

]

+

=

+

=

+

=

+

32

22

12

3

2

1

2

p

X

P

p

X

P

p

X

P

n

n

n

 

(

)

(

)

(

)

[

]

33

23

13

3

2

1

3

p

X

P

p

X

P

p

X

P

n

n

n

=

+

=

+

=

+

 

+

+

+

+

+

=

2

1

6

2

1

3

2

1

6

2

1

4

4

9

4

1

3

2

1

p

p

p

c

 

(

)

=

+

+

+

+

+

+

+

2

1

3

2

3

1

3

2

1

2

1

4

3

3

2

1

2

1

2

2

1

4

1

3

2

p

p

p

p

p

p

p

p

p

 

(

)

+

+

+

+

+

+

=

3

2

1

3

2

1

3

2

1

2

3

2

5

2

5

3

2

2

9

5

2

5

p

p

p

p

p

p

p

p

p

 

 
szukamy rozkładu stacjonarnego: 

(

)

(

)

3

2

1

3

2

1

,

,

0

2

1

2

1

2

1

2

1

0

4

3

0

4

1

,

,

p

p

p

p

p

p

=

 

1

   

dla

       

2

3

2

3

2

1

4

3

2

1

2

1

2

1

4

1

3

2

1

1

2

1

3

3

2

1

2

3

2

1

3

1

=

+

+




=

=

=

+

=

+

=

+

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

 

 

1

2

3

2

3

1

1

1

=

+

+

p

p

p

 

8

3

4

1

3

2

1

=

=

=

p

p

p

 

 

64

21

16

8

42

16

34

8

17

16

67

8

3

2

3

8

3

2

5

4

1

2

5

8

3

3

8

3

2

4

1

8

3

2

9

8

3

5

4

1

2

5

=

=

=

+

+

+

+

+

+

=

c

 

 
Zadanie 6 
 

(

) (

)

X

k

e

k

X

X

k

N

P

Y

X

k

N

P

=

=

=

=

!

,

 

( )

( )

Y

Y

x

f

,

2

Γ

 

)

3

,

4

(

Γ

Y

 

 
 
 

background image

( )

(

) (

)

2

2

2

X

X

E

X

N

EE

EN

EX

X

N

EE

EN

+

=

=

=

=

 

X

EX

EX

EX

EX

N

var

)

(

var

2

2

+

=

+

=

 

( )

2

3

3

2

3

!

2

!

3

3

2

3

3

)

4

(

3

1

2

2

3

4

0

3

3

4

=

=

=

=

=

=

Γ

=

=

=

β

α

y

e

y

y

Y

E

Y

X

EE

EX

 

( )

(

)

( )

(

)

=

+

=

+

=

Y

Y

E

Y

X

E

Y

X

E

X

2

var

2

var

var

var

2

 

=

=

Γ

Γ

=

=

=

=

Γ

=

+

=

5

4

6

9

6

4

3

)

2

(

)

4

(

3

6

3

2

4

)

4

(

3

1

6

2

4

2

2

4

3

3

4

2

2

2

2

β

α

y

e

y

y

Y

E

Y

E

Y

E

 

7

5

2

var

=

+

=

N

 

 
Zadanie 7 
 

(

)

m

dm

x

X

m

f

a

m

L

min

,....,

)

,

(

13

1

 

(

) (

)

(

)

13

1

13

1

13

2

1

,...,

)

(

,...,

,...,

,

x

x

f

m

f

m

x

x

f

x

x

x

m

f

=

 

(

)

(

)

=





Π



Π

=

dm

m

m

x

x

x

f

i

6

)

1

(

exp

3

2

1

2

exp

2

1

,...,

2

2

13

13

1

 

( )

=



+

+

Π

=

6

1

3

1

6

2

13

2

exp

3

2

1

2

2

2

14

m

m

m

x

m

x

i

i

 

( )

=



+







+

Π

=

6

1

2

3

1

80

3

exp

3

1

40

3

3

20

exp

3

2

1

2

2

2

14

i

i

i

x

x

x

m

 

( )

40

3

2

6

1

2

3

1

80

3

exp

3

2

1

2

2

14

Π



+

Π

=

i

i

x

x

 

(

)

( )

( )

( )

=





+

+

Π





+

+

Π

=

6

1

2

1

80

3

40

1

240

1

exp

40

2

1

6

1

3

1

6

1

2

13

2

1

exp

3

2

1

,...,

2

2

13

2

2

2

14

13

1

i

i

i

i

i

x

x

x

m

m

m

x

m

x

x

x

m

f

 

background image

( )

=





+

+

+

+

Π

=

6

1

2

1

80

3

40

1

240

1

6

1

3

1

3

20

2

1

exp

40

3

2

1

2

2

2

2

i

i

i

i

i

x

x

x

m

m

x

m

x

( )

=



+







+

Π

=

2

2

2

80

3

40

1

240

1

3

1

80

3

exp

3

1

40

3

3

20

exp

40

3

2

1

i

i

i

i

x

x

x

x

m





+





+

Π

=

40

3

;

3

1

40

3

40

3

2

3

1

40

3

exp

40

3

2

1

2

i

i

x

N

x

m

 

 

[

]

(

)

(

)

X

x

x

m

OZN

a

L

dm

x

x

m

f

a

m

e

a

m

=

13

1

13

1

,...,

:

min

)

(

,...,

1

)

(

 

 

+

=

+

=

2

2

2

1

exp

)

(

  

normalnego

rozkladu 

 

dla

1

)

1

(

)

(

X

X

X

a

X

t

t

t

M

a

EX

e

M

a

L

δ

µ

 

 

1

3

1

40

3

80

3

3

1

40

3

exp

)

(

+

+

+

+

=

a

x

e

x

a

L

i

a

i

 

dla  

15

=

i

x

 

1

15

3

1

40

3

80

3

15

3

1

40

3

exp

)

(

+

+

+

+

=

a

e

a

L

a

 

[ ]

16

19

80

95

80

3

92

80

3

40

46

80

3

15

3

1

40

3

0

1

...

exp

=

=

+

=

+

=

+

+

=

=

+

=

a

e

a

a

 

 
Zadanie 8 
 

0

 - zdarzenie, Ŝe osobnik nie przeŜył 1 roku 

1

A

 

- zdarzenie, Ŝe przeŜył 1 rok i nie przeŜył 2 roku 

2

A

 

- zdarzenie, Ŝe przeŜył 2 lata 

 

( )

(

)

0

2

2

0

1

1

p

A

P

=

=

=

θ

θ

 

( )

(

)

2

2

2

)

1

(

2

1

2

1

p

A

P

=

=

+

=

θ

θ

θ

θ

θ

 

( )

(

)

(

)(

)

1

2

2

2

1

)

1

(

1

2

1

1

1

1

2

1

1

p

A

P

=

=

+

+

=

+

=

θ

θ

θ

θ

θ

θ

θ

θ

θ

 

(

)

2

1

2

0

2

2

2

2

1

0

2

2

2

2

)

1

(

2

1

2

)

1

(

n

n

n

n

n

n

n

n

n

n

L

+

+

=

=

θ

θ

θ

θ

θ

θ

 

 

background image

(

)

(

)

)

1

ln(

2

ln

2

2

ln

ln

2

1

2

0

2

θ

θ

+

+

+

+

=

n

n

n

n

n

L

 

(

)

(

)

0

)

1

(

2

)

1

(

2

0

1

2

2

2

1

2

0

2

1

2

0

=

+

+

=

+

+

=

θ

θ

θ

θ

θ

θ

θ

n

n

n

n

n

n

n

n

 

(

)

n

n

n

n

n

n

n

n

n

2

2

ˆ

2

2

2

2

0

2

1

2

0

2

0

+

=

+

+

+

=

+

θ

θ

 

 
to jest rozkład wielomianowy czyli: 

(

)

(

)

j

i

j

i

i

i

i

i

i

p

np

n

n

p

np

n

np

En

=

=

=

,

cov

1

var

 

 

( )

2

2

2

ˆ

2

ˆ

ˆ

θ

θ

θ

θ

θ

θ

+

=

=

E

E

E

ODP

 

( )

2

2

ˆ

ˆ

var

ˆ

θ

θ

θ

E

E

+

=

 

[

]

2

0

2

0

2

2

1

2

2

ˆ

En

En

n

n

n

n

E

E

+

=

+

=

θ

 

(

)

[

]

2

0

2

0

2

2

0

,

cov

4

var

var

4

4

1

2

2

var

ˆ

var

n

n

n

n

n

n

n

n

+

+

=

+

=

θ

 

2

0

θ

n

En

=

 

)

1

(

2

2

θ

θ

=

n

En

 

(

)

2

2

0

1

var

θ

θ

=

n

n

 

(

)

(

)

2

2

2

2

1

)

1

(

2

)

1

(

2

1

)

1

(

2

var

θ

θ

θ

θ

θ

θ

θ

θ

+

=

=

n

n

n

 

(

)

)

1

(

2

)

1

(

2

,

cov

3

2

2

0

θ

θ

θ

θ

θ

=

=

n

n

n

n

 

[

]

θ

θ

θ

θ

θ

θ

θ

θ

=

+

=

+

=

2

2

2

)

1

(

2

2

2

1

ˆ

n

n

n

E

 

(

)

(

)

[

]

=

+

+

=

)

1

(

8

2

2

1

)

1

(

2

1

4

4

1

ˆ

var

3

2

2

2

2

θ

θ

θ

θ

θ

θ

θ

θ

θ

n

n

n

n

 

[

]

=

+

+

+

+

=

4

3

4

3

2

3

2

4

2

2

8

8

4

4

2

4

4

2

4

4

4

1

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

n

n

n

n

n

n

n

n

n

n

n

 

n

n

n

2

)

1

(

)

1

(

4

2

2

θ

θ

θ

θ

=

=

 

n

n

ODP

2

)

1

(

2

2

)

1

(

2

2

2

θ

θ

θ

θ

θ

θ

θ

=

+

+

=

 

 
Zadanie 9 
 
PoniewaŜ 

(

)

0

var

var

,

cov

=

=

+

i

i

i

i

i

i

Y

X

Y

X

Y

X

 to  

i

i

R

,

są nieskorelowane więc 

niezaleŜne bo mają rozkłady normalne 
 

(

)

ρ

δ

ρ

δ

δ

δ

µ

+

=

+

+

=

=

1

2

2

var

2

2

2

2

2

i

i

Z

EZ

 

 
 

background image

(

)

ρ

δ

ρ

δ

δ

δ

=

+

=

=

1

2

2

var

0

2

2

2

2

i

i

R

ER

 

 

(

)

(

)

(

)

(

)

)

9

(

1

2

)

9

(

1

2

2

2

10

1

2

2

2

10

1

2

χ

ρ

δ

χ

ρ

δ

+

=

=

i

i

i

i

R

R

Z

Z

                      

(

)

(

)

)

9

,

9

(

1

1

10

1

2

10

1

2

F

R

R

Z

Z

i

i

i

i

+

=

=

ρ

ρ

 

 

9

;

9

;

t

f

 - kwantyl rzędu t z rozkładu F(9,9) 

wiemy, Ŝe  

9

;

9

;

05

,

0

9

;

9

;

95

,

0

1

f

f

=

   sprawdzamy kwantyl rzędu 0,95 w tablicach F(9,9) 

 

(

)

05

,

0

178893

,

3

)

9

,

9

(

=

>

F

P

 

358

,

6

178893

,

3

2

178893

,

3

2

2

2

2

=





>

k

S

S

P

R

Z

 

629

,

0

178893

,

3

2

178893

,

3

1

05

,

0

5

,

0

1

2

2

=

=

=





<

k

t

t

S

S

P

R

Z

 

 
Zadanie 10 
 
X – numer losowania w którym wyciągamy po raz pierwszy kulę czarną 
ODP=E(X)-1 
 

5

3

10

6

)

1

(

=

=

=

X

P

 

15

4

9

6

10

4

)

2

(

=

=

=

X

P

 

10

1

8

6

9

3

10

4

)

3

(

=

=

=

X

P

 

35

1

7

6

8

2

9

3

10

4

)

4

(

=

=

=

X

P

 

210

1

6

6

7

1

8

2

9

3

10

4

)

5

(

=

=

=

X

P

 

7

11

70

110

210

330

210

5

24

63

112

126

210

5

35

4

10

3

15

8

5

3

=

=

=

+

+

+

+

=

+

+

+

+

=

EX

 

7

4

7

7

11

1

7

11

=

=

=

ODP