Tw Eulera, kongruencje liniowe i równania diofantyczne


Ć n " N
Ć(n) = #{k : NW D(k, n) = 1, 1 d" k d" n - 1}
a, n " N NW D(a, n) = 1
aĆ(n) a" 1
a, p " N p
NW D(a, p) = 1
ap-1 a" 1
n = p Ć(p) = p - 1
ax + by = c
a, b, c, x, y " Z
g = NW D(a, b) a, b = 0 g

ax + by x, y " Z
S = {ax + by : x, y " Z} S
l = ax0 + by0 x0, y0 " Z
x, y " N ax + by e" 0
S )" N = " l = g NW D(a, b)

l|a
a = kl + r 0 d" r < l
r = a - lk = a - k(ax0 + by0) = a(1 - kx0) + b(-ky0)
r " S l S
l|b
b = sl + r 0 d" r < l
r = a - ls = a - s(ax0 + by0) = a(1 - sx0) + b(-sy0)
r " S l S
l a b
g a b a = gc b = gd c, d " Z
l = ax0 + by0 = gcx0 + gdy0 = g(cx0 + dy0)
g|l g = NW D(a, b)
a b g = l
ax + by = c
c = NW D(a, b) x, y " Z
S = ax + by : x, y " Z
NW D(a, b)
ax + by = c
x, y " Z NW D(a, b)|c
NW D(a, b)|c ax + by = c
c = NW D(a, b)k k " Z
ax + by = NW D(a, b)
x0, y0 " Z ax0 + by0 = NW D(a, b)
k kx0, ky0 ax + by = c
ax+by = c NW D(a, b)|c
NW D(a, b) c
ax + by = c
x , y " Z ax + by = c c = (NW D(a, b))k + r
0 < r < NW D(a, b)
ax + by = kNW D(a, b) x0, y0
ax0 + by0 = kNW D(a, b)
ax + by = c ax0 + by0 = kNW D(a, b)
a(x - x0) + b(y - y0) = r
r " S = ax + by : x, y " Z
NW D(a, b) S
a, b " Z NW D(a, b)|c
ax + by = c
b
x = x0 + t
NW D(a, b)
a
y = y0 - t
NW D(a, b)
t " Z x0, y0
ax + by = c
x, y
x0, y0 ax+by = c ax0+by0 =
c x , y ax + by = c
ax + by = ax0 + by0
a(x - x0) = b(y0 - y )
NW D(a, b)|a NW D(a, b)|b
a b
(x - x0) = (y0 - y )
NW D(a, b) NW D(a, b)
a b
NW D(NW D(a,b), ) = 1
NW D(a,b)
a b
b
( )|(x - x0)
NW D(a, b)
a
( )|(y0 - y )
NW D(a, b)
t " Z
b
x - x0 = t
NW D(a, b)
a
y0 - y = t
NW D(a, b)
x , y
b
x = x0 + t
NW D(a, b)
a
y = y0 - t
NW D(a, b)
ax+by = c
ax a" b a, b, n "
Z x
ax1 a" b
ax2 a" b
x1 x2 x1 a" x2
ax a" b a, b, n " Z NW D(a, n)|b
NW D(a, n)
ax0 a" b x0 0 d" x0 d" n - 1
n n
M = {x0, x0 + , . . . , x0 + (NW D(a, n) - 1) }
NW D(a, n) NW D(a, n)
ax a" b
ax + ny = b
NW D(a, n)|b x0, y0
ax + ny = b
n
x = x0 + t
NW D(a, n)
a
y = y0 - t
NW D(a, n)
n
t " Z x a" x0
NW D(a,n)
n
x 0 d" x d" - 1 NW D(a, n)
NW D(a,n)
n
x = x + k
NW D(a, n)
k = 0, 1, . . . , NW D(a, n) - 1 {0, 1, . . . , n -
1}
n n
x + k a" x + l
NW D(a, n) NW D(a, n)
n n
k a" l
NW D(a, n) NW D(a, n)
n
n| (k - l)
NW D(a, n)
n
(k - l) = ns
NW D(a, n)
s " Z 0 d" k, l d" NW D(a, n) - 1 0 d" (k - l) d"
NW D(a, n) - 1 k e" l
n
ns " Z (k - l) k = l
NW D(a,n)
NW D(a, n)
ax a" 1 NW D(a, n) = 1
x 0 d" x d" n - 1
a " Z
NW D(a, n) = 1 b " Z 0 d" b d" n - 1
ab a" 1
b ax a"
1
R = {a1, . . . , aĆ(n)}
" NW D(ai, n) = 1 i = 1, . . . , Ć(n)
" ai a" aj =Ò! i = j
R Ć(n)
a, n " Z R = {a1, . . . , aĆ(n)
NW D(a, n) = 1
Ra = {aa1, . . . , aaĆ(n)}
Ra
NW D(aai, n) = 1 i = 1, . . . , phi(n)
aai a" aaj NW D(a, n) = 1
NW D(ai, n) NW D(aai, n) = 1
NW D(c, n) = 1
ac a" bc =Ò! a a" b
a = ai, b = aj, c = a ai a" aj R
i = j
R
{x : NW D(x, n) = 1, 1 d"
x d" n - 1} NW D(a, n) = 1
R = {aa1, . . . , aaĆ(n)}
R = Ra
a1 · a2 · . . . aĆ(n) a" aa1 · aa2 · . . . aaĆ(n)
a1 · a2 · . . . aĆ(n) a" aĆ(n)a1 · a2 · . . . aĆ(n)
NW D(ai, n) = 1 i = 1, . . . , Ć(n) NW D(a1 · . . . · aĆ(n)) = 1
1 a" aĆ(n)
aĆ(n) a" 1


Wyszukiwarka

Podobne podstrony:
Tw Masona i równania diofantyczne w pierścieniu wielomianów
Niejednorodne liniowe rownania rozniczkowe
Coś o równaniach diofantycznych
Rownania diofantyczne W Rygulska
MAD Liniowe rownania rekurencyjne
Zestaw 1 Funkcja kwadratowa Funkcja homograficzna Równanie liniowe
uklady rownan liniowych
4 uklady rownan liniowych
t5 uklady rownan liniowych
BOiE układy równań liniowych
wykład 11 układy równań liniowych
01 oprac geometria równań liniowych
Równania liniowe rzędu pierwszego
Wykład 16 Równania liniowe

więcej podobnych podstron