Ć n " N
Ć(n) = #{k : NW D(k, n) = 1, 1 d" k d" n - 1}
a, n " N NW D(a, n) = 1
aĆ(n) a" 1
a, p " N p
NW D(a, p) = 1
ap-1 a" 1
n = p Ć(p) = p - 1
ax + by = c
a, b, c, x, y " Z
g = NW D(a, b) a, b = 0 g
ax + by x, y " Z
S = {ax + by : x, y " Z} S
l = ax0 + by0 x0, y0 " Z
x, y " N ax + by e" 0
S )" N = " l = g NW D(a, b)
l|a
a = kl + r 0 d" r < l
r = a - lk = a - k(ax0 + by0) = a(1 - kx0) + b(-ky0)
r " S l S
l|b
b = sl + r 0 d" r < l
r = a - ls = a - s(ax0 + by0) = a(1 - sx0) + b(-sy0)
r " S l S
l a b
g a b a = gc b = gd c, d " Z
l = ax0 + by0 = gcx0 + gdy0 = g(cx0 + dy0)
g|l g = NW D(a, b)
a b g = l
ax + by = c
c = NW D(a, b) x, y " Z
S = ax + by : x, y " Z
NW D(a, b)
ax + by = c
x, y " Z NW D(a, b)|c
NW D(a, b)|c ax + by = c
c = NW D(a, b)k k " Z
ax + by = NW D(a, b)
x0, y0 " Z ax0 + by0 = NW D(a, b)
k kx0, ky0 ax + by = c
ax+by = c NW D(a, b)|c
NW D(a, b) c
ax + by = c
x , y " Z ax + by = c c = (NW D(a, b))k + r
0 < r < NW D(a, b)
ax + by = kNW D(a, b) x0, y0
ax0 + by0 = kNW D(a, b)
ax + by = c ax0 + by0 = kNW D(a, b)
a(x - x0) + b(y - y0) = r
r " S = ax + by : x, y " Z
NW D(a, b) S
a, b " Z NW D(a, b)|c
ax + by = c
b
x = x0 + t
NW D(a, b)
a
y = y0 - t
NW D(a, b)
t " Z x0, y0
ax + by = c
x, y
x0, y0 ax+by = c ax0+by0 =
c x , y ax + by = c
ax + by = ax0 + by0
a(x - x0) = b(y0 - y )
NW D(a, b)|a NW D(a, b)|b
a b
(x - x0) = (y0 - y )
NW D(a, b) NW D(a, b)
a b
NW D(NW D(a,b), ) = 1
NW D(a,b)
a b
b
( )|(x - x0)
NW D(a, b)
a
( )|(y0 - y )
NW D(a, b)
t " Z
b
x - x0 = t
NW D(a, b)
a
y0 - y = t
NW D(a, b)
x , y
b
x = x0 + t
NW D(a, b)
a
y = y0 - t
NW D(a, b)
ax+by = c
ax a" b a, b, n "
Z x
ax1 a" b
ax2 a" b
x1 x2 x1 a" x2
ax a" b a, b, n " Z NW D(a, n)|b
NW D(a, n)
ax0 a" b x0 0 d" x0 d" n - 1
n n
M = {x0, x0 + , . . . , x0 + (NW D(a, n) - 1) }
NW D(a, n) NW D(a, n)
ax a" b
ax + ny = b
NW D(a, n)|b x0, y0
ax + ny = b
n
x = x0 + t
NW D(a, n)
a
y = y0 - t
NW D(a, n)
n
t " Z x a" x0
NW D(a,n)
n
x 0 d" x d" - 1 NW D(a, n)
NW D(a,n)
n
x = x + k
NW D(a, n)
k = 0, 1, . . . , NW D(a, n) - 1 {0, 1, . . . , n -
1}
n n
x + k a" x + l
NW D(a, n) NW D(a, n)
n n
k a" l
NW D(a, n) NW D(a, n)
n
n| (k - l)
NW D(a, n)
n
(k - l) = ns
NW D(a, n)
s " Z 0 d" k, l d" NW D(a, n) - 1 0 d" (k - l) d"
NW D(a, n) - 1 k e" l
n
ns " Z (k - l) k = l
NW D(a,n)
NW D(a, n)
ax a" 1 NW D(a, n) = 1
x 0 d" x d" n - 1
a " Z
NW D(a, n) = 1 b " Z 0 d" b d" n - 1
ab a" 1
b ax a"
1
R = {a1, . . . , aĆ(n)}
" NW D(ai, n) = 1 i = 1, . . . , Ć(n)
" ai a" aj =Ò! i = j
R Ć(n)
a, n " Z R = {a1, . . . , aĆ(n)
NW D(a, n) = 1
Ra = {aa1, . . . , aaĆ(n)}
Ra
NW D(aai, n) = 1 i = 1, . . . , phi(n)
aai a" aaj NW D(a, n) = 1
NW D(ai, n) NW D(aai, n) = 1
NW D(c, n) = 1
ac a" bc =Ò! a a" b
a = ai, b = aj, c = a ai a" aj R
i = j
R
{x : NW D(x, n) = 1, 1 d"
x d" n - 1} NW D(a, n) = 1
R = {aa1, . . . , aaĆ(n)}
R = Ra
a1 · a2 · . . . aĆ(n) a" aa1 · aa2 · . . . aaĆ(n)
a1 · a2 · . . . aĆ(n) a" aĆ(n)a1 · a2 · . . . aĆ(n)
NW D(ai, n) = 1 i = 1, . . . , Ć(n) NW D(a1 · . . . · aĆ(n)) = 1
1 a" aĆ(n)
aĆ(n) a" 1
Wyszukiwarka
Podobne podstrony:
Tw Masona i równania diofantyczne w pierścieniu wielomianówNiejednorodne liniowe rownania rozniczkoweCoś o równaniach diofantycznychRownania diofantyczne W RygulskaMAD Liniowe rownania rekurencyjneZestaw 1 Funkcja kwadratowa Funkcja homograficzna Równanie linioweuklady rownan liniowych4 uklady rownan liniowycht5 uklady rownan liniowychBOiE układy równań liniowychwykład 11 układy równań liniowych01 oprac geometria równań liniowychRównania liniowe rzędu pierwszegoWykład 16 Równania liniowewięcej podobnych podstron