Wykłady z relatywistycznej mechaniki kwantowej


SL(2, C)
ł
1
S =
2
(t, )
t (t, )
t
t = 0
t > 0
"
" t
t
"
" " " " "
"x "
x
"x = {"x0, "x1, "x2, "x3} = {"x}.
"x
x
(1, 2, 3)
(0, 1, 2, 3)
c = 1
"s2 = ("t)2 - (" )2 = g"x"x,
ł ł
1 0 0 0
ł ł
0 -1 0 0
ł ł
g = .
ł łł
0 0 -1 0
0 0 0 -1
0 3
g
+ - --
-g - + ++
+- --
- + ++
- + ++
"s2
"s2
" " " " "
"x
c = 1
("t)2 = (" )2,
"s2 = 0.
("t)2 (" )2
{x} U {x }
U
x = x (x0, x1, x2, x3), = 0, 1, 2, 3
"x "x 
gądxądx = gdx dx  = g dxądx.
"xą "x
dxądx
"x "x 
g = gą.
"xą "x
g = -1
"x  2
= 1.
"x
+1
-1 ą =  = 0
"x 0 2 "x 1 2 "x 2 2 "x 3 2
= 1 + + + e" 1.
"x0 "x0 "x0 "x0
"x 0 "x 0
e" 1 d" -1
"x0 "x0
"
"x  "x 0
= 1; e" 1.
"x "x0
Lę!+
"
"x  "x 0
= -1; d" -1,
"x "x0
"
"x  "x 0
= -1; e" 1.
"x "x0
"
"x  "x 0
= 1; d" -1.
"x "x0
"t -"t " -"
"t -"t " -"
Lę!+
z
" " " " "
{"x } "x
U {"x} U
"x "x
{"x} "x U
{"x } U
j
Dm m(ą, , ł)
U "x = {"x } "x = {"x}
"x "x
U
U U
= {x , y }
U U
U ą z
U {x, y} {x , y } {x, y}
ą U {x, y} {x , y }
{x, y} {x , y } ą
" " " " "
" " " " "
U U
z
z
x , y , z
x , y , z
t
" " " " "
U U
z
z
z
"x = "x "y = "y .
("t)2 - ("z)2 = ("t )2 - ("z )2.
"x "x
"t = "t cosh  + "z sinh , "z = "t sinh  + "z cosh .

"x
U
U v U U
"z = 0
"z
tanh  = = v,
"t
U U

U U
"x "x
" " " " "
"t = ł("t + v"z),
"z = ł("z + v"t),
1
ł = " .
1 - v2
v
-v
U z
U z a" 0
" " " " "
U t  = arctan v t
Ą
- 2 z
2
" " " " "
v > 1
= 
2
= R2 R
R
 ą"
1
"t ą "z = ("t ą "z)eą,
2
 "  -"
" " " " "
v1
v2 vsuma
z
"t = "t cosh  + "z sinh  ,
 "t "z
"t = "t cosh( + ) + "z sinh( + ),
suma =  +  .
tanh  + tanh  v + v
vsuma = = .
1 + tanh  tanh  1 + vv
vv c-2
 | tanh | < 1 v < 1
dt
v = 1
z
1 + 1
z
{0, 0}
t
t z
{0, 0}
x1
x2
U U v
U
t = ł(t + vz).
1.2 "
"s2 = t2 - z2 < 0,
|v| < 1 t > 0 t < 0
U
A B "s2
AB
U z z
 tan  = v v
z
z 2 > t 2
" " " " "
"s2 > 0.
A B
{0, 0}
t > |z|
y z t
3 + 1
t < -| |
A B
B A
A B
"s2 < 0 A
AB
B
10

2, 2 10-8
c H" 660
U
U
U "z a" 0
U
"t = ł"t,
"t "t

ł
z
l0
U l
U
l l0
U
t
x1 x2
"z a" z2 - z1 = l0.
t1 t2
"z = ł(l0 + v"t); "t = ł("t + vl0).
U "z "t = 0
"t
l0
l = ł(l0 - v2l0) = .
ł
l l0 ł
l1 l2 < l1
"x
"x =  "x,


z " "t
{a}
a =  a,

{"x}
{x}
"s2 = g"x"x.
a
a2 a" gaa.
a
a b
ab a" gab
1
ab = [(a + b)2 - a2 - b2]
2

a = ga.
a0 = a0; ai = -ai, i = 1, 2, 3.
a = ga.


g
1.10
g = g
a = ga.
g
g

gągą =  .
a = b a = b
ab = ab = ab
a = a.
a b = a bą = ab,
ą
a b 16 ab
abą

 = ą,
ą
 = (-1)

a = a(-1) .

" " " " "
a
ab
{a}
{a} {b}
2 2
ds2 = dt2 - d = dt2(1 - )
"
d a" ds2 = ł-1dt.
2
1.5 d" 1 ds2 e" 0

dx
u = = {ł, ł },
d
u2 = 1
dt = ą|d | d a" 0 
t
az = | |
z
p = mu,
p0 p2 = m2
2
E2 = m2 + .
| | 1 m 0
mł
2
2
m2 E = m2 +
2
m2
E = mc2
E = mc2
2 2
( )2
E = m + - + . . . .
2m 8m3
"
"x
"x
dx = dxą =  dxą,
ą
"xą
"x
=  .
"xą ą

" "xą " ą "
= =  .

"x "x "xą "xą
 = -1
ą "x "xą "x

  = = =  .
ą 
"xą "x  "x 
" "
" a" , " a" ,
"x "x
= 1
Ć = -i".
pi -pi
"
p = +i ,
Ć
"x
"
$ = +i"t
"
i = $,
"t
m1 E1 a" ELab
1
m2 = E2 = m2
2
Ecms
+ = .
1 2
2
s a" (p1 + p2)2 = Ecms.
s
s = p2 + 2p1p2 + p2 = m2 + 2m2ELab + m2.
1 2 1 2
"
s = Ecms = 2m2ELab + m2 + m2
1 2
m1 = m2 H" 1 Ecms = 100
ELab H" 5000
50
x = y = z = t = 0
z v ł
(z, x)
0

x/z = tan   (0, v, )
u = {1, 0, 0, 0}
pł
up = 0.
ł
u = {ł, 0, 0, łv}
p = {,  sin , 0,  cos }.
ł
0 = ł - łv cos 

0
 = .
ł(1 - v cos )
cos  = ą1
"
1 - v2 1 ą v
 = 0 = 0 ,
1 " v 1 " v
0 90ć% cos  = 0  =
0
ł
m n
m n
l
...ąm
1...m ą1
k
T =  T ...n -1
1...n ąk 1 l
k=1 l=1
g gab
g gab
ab
a ągąb  a" aą gą b = agb.
 
a b
g = gąą  .
 
 
-1 -1

 
g = g -1 -1 ,

g
g
g
1.7
3 3
" " " " "
ął
= 0
ął
ą, , ł,  0, 1, 2, 3
= 1 = -1
ął ął
a0 a1 a2 a3
b0 b1 b2 b3
D a" aąbcłd = ,
ął
c0 c1 c2 c3
d0 d1 d2 d3
a, b, c, d
ął
D
-1
a0 b0 c0 d0
-a1 -b1 -c1 -d1
D = - .
-a2 -b2 -c2 -d2
-a3 -b3 -c3 -d3
a2 ab ac ad
ba b2 bc bd
-D2 = ,
ca cb c2 cd
da db dc d2
D2
D
D
a, b, c, d
D = 0

D
ął
a, b, c, d
" " " " "
d4x
d4p
" " " " "
D
D
ął
ął
" " " " "
d3p = dpxdpydpz
dpx, dpy, dpz
d3p
z pz = mT sinh y
E( ) = mT cosh y mT = m2 + p2 + p2
x y
d3p = dpxdpymT cosh ydy = E( )dpxdpydy
y
z dpx
dpy 1.4
dy
d3p
d&! a"
E( )
z z
d3p
d3p f( ) = E( )f( )
E( )
d3p f( )
d3
E( )f( )
E( )
(p2 - m2)d4p
p0 2
p0
" " " " "
xł
"2x "x  "x "2x 
g + g = 0.
"xą"xł "x "xą "x"xł
ą, , ł ą ł
ł   ą
"2x "x  "x "2x 
g + g = 0.
"xł"x "xą "xł "xą"x
g
"2x "x  "x "2x 
g - g = 0.
"xą"xł "x "xł "xą"x
ą ł
"x "2x  "2x "x 
g - g = 0,
"xą "x"xł "xą"xł "x
"2x "x 
g = 0.
"xą"xł "x
ą ł
"2x
 = 0, 1, 2, 3 = 0, 1, 2, 3
"xą"xł
g = 0

"2x
= 0.
"xą"xł
A
"
= " , = -"A0 - ,
"t
(x) a" A0

F = "A - "A,
A(x) A (x) = A(x) + "(x),
(x)
x = 1, 2, 3 "
"
-
"x
(x) = (x) - "(x).
ł ł
0 -Ex -Ey -Ez
ł
Ex 0 -Bz By ł 

ł ł
F = = -F .
ł
Ey Bz 0 -Bx łł
Ez -By Bx 0
v z
Ex = ł(Ex + vBy), Ey = ł(Ey - vBx), Ez = Ez,
Bx = ł(Bx - vEy), By = ł(By + vEx), Bz = Bz.
" " " " "
( , )
(x)
d = dŁ " = ŚŁ( )
C Ł
C
Ł
ŚŁ( )
Ł

"F = 4ĄJ,
J = {, }
"

""F = 0.
""

F
"
"J a" + " = 0.
"t
"
" = 0, " + = 0.
"t
" " " " " "
dp

= qF u,
d
 q u
d
= q
dt
=
, =

" " " " "
C+ C-
C+ C-

C+ C-
=
=
A
A
= " =
=
(x)
(x) = -"(x).
(x) a"
(x)
(x)
a"
d = 0 C
Ł = Ł C
(x)
Ł Ł
Ł
Ł (x)
(x) a"
C C- C+
C
C
=

(x) a" Cą
(x)
Ł
Ł a"
(x) a" C
" " " " "
C+ = (x) =
C+
C+
C-
(x) = C-
Ł
C
C+

" " " " "
(x) q
(x)
 (x) = e-iq(x)(x).
(x)  (x)
e-iq(x) x
(x) =
e-iq(x)
11 U(1)
U(1)
(x)
px
(x) = - (x) = e-ipx  (x) = 1
q
(p(x)) = p (x) (x),
Ć Ć
p(x)
Ć
p(x) = iD(x)(x).
Ć
D(x) a" " + iqA(x),
A
i q i
iD
q
A
(D(x)) = D  (x),
e-iq(x)(" + iqA(x))(x) = (" + iqA (x))e-iq(x)(x).
A (x) = A(x) + "(x).
t = 0 {(x) = ei , A = 0}
1
{(x) = 1, = , A 0 = 0}
q
A
"
""(x) D"(x)
{x, y}
1
r d"
2
1
z r > = 0 {x, y}
2
1
Ś(B) = ĄB.
4
{x, y}
Br Br 1
A = {0, - sin Ć, cos Ć, 0}, r d" ,
2 2 2
B B 1
A = {0, - sin Ć, cos Ć, 0}, r e" .
8r 8r 2
{r = 1, Ć = Ą}
{r = 1, Ć = 0} C+ 0 < Ć < Ą C-
Ą < Ć < 2Ą r a" 1
d = {0, - sin ĆdĆ, cos ĆdĆ, 0},
C+ (dĆ < 0) C-
ĄB 1
d = " = " Ś(B).
8 2



1
(x)d = 0, ( (x) - (x))d = ą Ś( ).
ą ą
2
Cą Cą
"0
ą

Aą "0
ą
Cą Aą
ą

= - "ą.
ą
( (x) - (x))d = "ąd = "ą
ą
Cą Cą
"ą ą
C+ C-
1
"ą = ą Ś( )
2
"ą
-q"ą
Cą "ą
1
"ą = "0 " qŚ( ),
ą
2

A
" a" "+ - "- = "0 - "0 - qŚ(B).
+ -
2Ą
2Ąn
"Ś(B) = ,
q
n


= 0
" " " " "
" = "0 - "0
+ -
" " " " "
Ą
Ś(B) = n,
e
(-e) n
-2e
" " " " "
V (x)
1
2
iD0(x) = - (x) + V (x)(x).
2m
V (x)
1
2
iD 0 (x) = -  (x) + V (x) (x),
2m
2
D 0 (x) = D0(x)  (x) = ( (x)) =
2
( (x))
e-iq
=
"(x) 1
i = - "2(x) + V (x) + qA0(x) (x),
"t 2m
V (x)+qA0(x)
E
i"t iD0
e-iEt
q c c = q
A(x)
V (x)

HB = - .
z = {0, 0, B}
yB xB
A = {0, - , , 0}.
2 2
(" - iq )2 "2 iq q2 2
- = - + " + .
2m 2m m 2m
2
HB
iqB " " qB q
HB = (-y + x ) = (ypx - xpy) = - .
2m "x "y 2m 2m
z BLz =
e
B = H" 5, 8 10-5eV/T,
2m
(-e) m
HB = B .
= -B .
e
N = H" 3.15 10-8eV/T,
2mp
mp
HB = gB , g = 2,
g
Jz = Lz + Sz
" = "
Lz + 2Sz
g = 2
g - 2 ą
= + O(ą2).
2 2Ą
1
ą H"
137
2.7 10-13
ą
-1, 91N
2.79N
(pp - m2)(x) = 0.
Ć Ć
p2 - m2 = 0
2
= E p = i"
2m
"" + m2 (x) = 0.
a" ""
( + m2)(x) = 0.
Ć(a)
T x x = x + a
Ć(a)x Ć-1(a)x = x - a.
T = x = x + a, x = T
(x)
x| |
Ć(a)f(x).
f (x) = T
f (x ) = f(x).
x
x x
Ć-1(a)x)
f (x) = f(T
f(x) = x
" " " " "
f
x f
a x
f
z 90ć% y
x
y ( = )
T (x, y)
z
z Ć
" " " " "
f(x)

f (x) = f(-1x),

f
f(x) x
-1 = ,

f (x) = f(x),
f( ) = cos Ć
z
" " " " "
x
x + a
Ć(a)( Ć(a)(x).
0 = T + m2)(x) = ( + m2)T
Ć(a)
T
+ m2
Ć(a)
T
p(x) = N(p)e-ipx,
N(p) x p
Ć(a)N(p)e-ipx = N(p)e-ip(x-a) = eipaN(p)e-ipx,
T
p = i" p
Ć
p N(p)
Ć(a)
T
a
" " " " "
+m2
0
p0(x) = e-ip tp0(0, ).
p(x)
2
(p0)2 - = m2,
2
p0 = ą + m2.
p0 > 0 E = p0
p0 < 0
t = 0
p0 < 0
E = -p0 > 0 - E2 - 2
Sz z
S
-ip0"t
-ip0(-"t) = -i(-p0)"t -p0 = E > 0
E > 0
t = t0 t0
t < t0
t > t0
e+e-
" " " " "
J "J = 0
J0 = |(x)|2
J
j
j0
" " " " "
"(x) (x)
"(x)( + m2)(x) = 0; (x)( + m2)"(x) = 0.
"(x) (x) - (x) "(x) = 0.
0 = "(x)""(x) - (x)"""(x) = " ["(x)"(x) - (x)""(x)]
"J = 0,
J = N ("" - "") ,
N m V (x)
" D ""
"
D"
"
J = N "D - D" ,
D = " + iqA N
" " " " "
0
(x) = e-ip t(0, )
J0(x) = -2iNp0|(0, )|2.
N J = qu u q
" " " " "
i
p0 > 0 N =
2m
p0
J0(x) = |(0, )|2.
m
p0
1
m
p0 < 0 -iN
J0(x) d" 0
N
p0
" " " " "
E
J0(x) = q |(0, )|2,
m
q E = |p0|
q = 0 J(x) a" 0
E
ł
ł E
A
(x) = 0,
(x)
A(x) a" (x).
(x) = 0 = (x).
(x)
A
[, ] = 0,

Ć(a)
3.1 = + m2 = T
Lę!+
= "" (x)
Ć
( + m2)Lę!+(x) = 0.
Ć
Lę!+(x) (x)
(x)
Ć
P
Ćx Ć2x
P = {t, - }, P = x.
Ć2
P = 1
2Ą
Ć2
P = 1
Ć(x) Ć

Ć
ĆĆ(x) Ćx), Ć2Ć(x) 2
P = Ć(P P = Ć(x)
2
Ć2
P = 1 = 1
= ą1.
Ą
S = (-1)S
= (-1)S+1 S = 0
S = 1
Ćx) L
Ć(P = Ć(x)
= ą1
L
ĆĆ(x) Ćx) L
P = Ć(P = Ć(x).
Ć(x)
L
Ć
P
L
= (-1)L
L
" " " " "
" " " " "
" " " " "
Ć
"" P
ĆP (x)
Ć(x)
Ą
" " " " "
x, y z 180ć%
Ć
z Lę!+

ĆC(x) = Ć"(x).
C
C
Ć(x)
C
Ć(x)
2Ć(x) = | |2Ć(x),
C
2 = 1
C
q
(" + iqA(x))(" + iqA(x))Ć(x) + m2Ć(x) = 0,
C
(" - iqA(x))(" - iqA(x))ĆC(x) + m2ĆC(x) = 0.
-q 

0 0
e-ip t e+ip t
p0 < 0
qA (-q)(-A) =
qA
(Ć"(x))" = Ć(x)
Ć(x) ĆC(x)
Ą0
n Ą+ n Ą-
n0 Ą0
" " " " "
C
+1
Ą
Ć
T
Ćx
T = {-t, }.
Ć2
T = 1
ĆĆ(x) T Ćx).
T = Ć"(T
T
Će-iEt
T = (e-iE(-t))" = e-iEt,
t
("" +m2)
ĆT
Ć
P
" Lę!+
"
"
CP T
CP T
CP T
Ć
P
CP
CP T
CP
SL(2, C)
Lę!+
SU(2)
2Ą
2Ą
Lę!+ SL(2, C)
L
SU(2)
SL(2, C)
SL(2, C) Lę!+
 SL(2, C) A
 A = AA B.
B
{1, 2}

Lę!+
U
U-1
U = UAU-1U.
A 

= UAU-1  = U.
A
SL(2, C)
1
j = m = ą1
2 2
12 - 21
Lę!+
(12-21) = (A1 1+A1 2)(A2 1+A2 2)-(A2 1+A2 2)(A1 1+A1 2).
1 2 1 2 1 2 1 2
(12 - 21) = (12 - 21) det A = 12 - 21,
det A A
det A = 1.
Lę!+
A = 1 + c + ( + i ).
c i i =
x, y, z 2 2
|c|
|ai| |bi|
c = 0.
|c|, |ai|, |bi|
det A = 1 c = 0
" " " " "
=
1 + i 
" " " " "
AA a" 11 + 22 = 12 - 21.
1 = 2; 2 = -1.
A = B.
AB
0 1 -1
T -1 T
= = - = - = = iy.
-1 0
e1 e2
 = AeA.
eA
A 
1.10
AB = AA
AB
AB
(AB + BA) = 0
AB
AA = -AA.
AA = 0.
A
B
AB BA BA
A = - B = B = B ,
AB
= ,
AB
AB
= AB
" " " " "
A
DC
A =  B = AB C = AB D a" ABB.
AB AB AB
C C

T
= A = yAy = (A-1)T .
A = B(A-1)B .
A
AA
" " " " "
a b d -c
A = , = .
c d -b a
" " " " "
 A" = AA "B".
B
A" SL(2C)


A
A"
A A"
U A
A" = UAU-1.
A = 1 + ( + i ),
A" = 1 + ( - i )".
( - i )" = ( + i )UU-1.
=
" = UU-1.
=
" = -UU-1.
A"
A  "
A"
Ł Ł
 A = A"A .

A" " x = y"
y = x"
a
 "
b
,  A
A
A
Ł
A" = "A.

I
Ł
I, I, I I
Ł
=
"U = -U.
U y
x z y
0 1
U = iy = = .
-1 0
Ł
A <" A, A <" -A.
Ł
a <" b a b
Lę!+ A A"
" " " " "
" " " " "
Lę!+ A A"
1.10 m
n
2m+n
1 1 m 1 n 1
ś A ,...,Am,1,...,n = AA . . . AA A" . . . A" śC ,...,Cm, 1,..., n,
C1 Cm 1 n
A1 Am 1 n
1
śA ,...,Am,1,...,n <" 1 . . . m m+1 . . . m+n,
<"
A
a b
śAB = ,
c d
d -c

śAB = = śAB = (ś-1)BA det ś,
-b a
ś śAB
" " " " "
ś
Lę!+
1
śA ,...,Am,1,...,n,
A1A2
Lę!+
ś A1 "! A2
ś
m n
Ł
1 1
m + 1 n + 1
d(m, n) = (m + 1)(n + 1).
SL(2C)
(m + 1)(n + 1) = 4
m = n
śA
p
śA
śA
Lę!+
1 j
Tm j = 0, 1
2
ą1 ą2 ą
j
 Tm
p
1 1
1
T1 = " (-px - ipy) <" ą1ą1 = - " ś11,
2 2
1 1
1
"
T0 = pz <" (ą1ą2 + ą2ą1) = - (ś12 + ś21),
2
2
1 1
1
"
T-1 = (px - ipy) <" ą2ą2 = - " ś22,
2 2
1 1
0
"
T0 = p0 <" (ą1ą2 - ą2ą1) = - (ś12 - ś21),
2
2
"
śAB = - 2ąAąB.
0
T0
0 1
T0 Tm
 
śAB
śAB = śBA
śA
Ł
ś11 = ś2 <" ś21
1
Ł
ś12 = ś2 <" ś22
2
Ł
ś21 = -ś1 <" -ś11
1
Ł
ś22 = -ś1 <" -ś12.
2
<"
Ł
21 = px + ipy,
Ł
22 = -p0 - pz,
Ł
-11 = p0 - pz,
Ł
-12 = -px + ipy,
 A
p
śA
A
 śA

A
Ł -p0 + pz px - ipy Ł
IJ = = (-p0 + )IJ.
px + ipy -p0 - pz
śA
ś A = AA A" śC  = (AśA )A.
C

det A = 1
Ł Ł
det ś IJ = det śIJ.
śIJŁ
A
Ł
det IJ = 2(p0)2 - 2
2 = 1
 = ą1

 = -1.
A  = -1 śA
Lę!+ śA
p
2 = 1 AA
" " " " "
 = -1
śA = (p)A,

 = {1, -}.

śIJŁ I JŁ
Ł
1.10 IJ

T
(p0 + T ) = y(p0 + T )y = p,

A = {1, }A
Lę!+
z z
x, y, z
z
z
A = 1 +  = A .
=
A
v
ś
ś = ś + ( )ś + ś( ).
ś
śA
ś - ś
 ś
ś - ś = ( )(p0 + ) + (p0 + )( ) = 2p0( ) + 2 ,
jk + kj = 2jk
ś - ś = p 0 - p0 + ( - ).
v z
p 0 - p0 = vpz, p x - px = 0, p y - py = 0, p z - pz = vp0,
ax = ay = 0, vpz = 2azpz, vp0 = 2p0az.
1
az = v
2
z v
v
A = 1 + z.
2
A
z Ć
Ć
N
N
v
y = v
y y
N
y
y yz
z
2
A(y) = AN ( ) = (1 + )N = e .
N 2N
1 0
u+ = u- = A
0 1
ey/2 e-y/2
y z
y
2
e 0
A(y) = A"(y) = y .
0 e- 2
" " " " "

z ą1
2

y y
2 2
A(y)(c+u+ + c-u-) = e c+u+ + e- c-u-.
z y
" c+ = 0

z
y -"
" " " " "
A

Ć
P
z
Ćx Ć2x ĆSzP
Ć-1
P = {t, - }, P = x, P = Sz
Ć2
P
Ć2
P
2Ą
Ć2(x)
P = (x) 2Ą
Ć2(x)
P = -(x).
Ć2
P
z
ĆA(x) P Ćx) ĆA(x) Ł Ćx).
P = A(P P = iA(P
z A
P
P
" " " " "
Ć
x = 0 P
P
ĆL(v)A(0) = P L(v)A(0) P
ĆL(v)A(0) = L(-v) P A(0),
P
Ć
x = 0 Lx = x
" " " " "
 ś
Sz
" " " " "
ĆA(x) = iA(P P Ł = iA(P
Ćx), ĆA(x) Ćx),
P
Ł
Ł Ł
ĆA(x) Ćx), ĆA(x) Ćx).
P = -iA(P P = -iA(P
I
Ł
Ć
P
Ć
-iP

Ł
"
A(x) = "A(x), A(x) = A(x),
C Ł C
Ł
"
A(x) = A(x), A(x) = "A(x),
C C
Ł
C
2 = 1.
Ł
2A(x) =  "A(x) = | |2A(x).
C C
Ł
I(x) I(x)
" " " " "

1
0
Ł Ł
I I I I
a 1 1 a"
 =  a = a" = C .
C
0 0 0 0
Ł
I I
a a
 = C ,
0 0
1
0
C
"
C C
" " " " "
CP
Ł
"
ĆA(x) = -i CA(P P Ł = -i C"A(P
Ćx), ĆA(x) Ćx),
P
ĆA(x) C Ćx), P Ł = i CA(P
ĆA(x) " Ćx).
P = i "A(P
Ł
i
Ć
P

" " " " "
Ć
P
Ć Ć.
P = P
Ć2
i P = -1
Ć
T
Ćx Ć2x ĆSzT
Ć-1
T = {-t, }, T = x, T = -Sz
ĆA(x) T A Ćx) ĆA(x) T Ł Ćx),
T = " (T T = "A(T
T
Ć
 T
Ć
x = 0 T
L(v)A L(v) z
Ł Ł
ĆL(v)A(0) = T L(v)"A(0), T
ĆL(v)A(0) = T L(-v)"A(0),
T

" " " " "
ĆA(x) T A Ćx), ĆA(x) T Ł Ćx),
T = " (T T = - "A(T
Ł
Ł
ĆA(x) T Ćx), ĆA(x) T Ł Ćx).
T = - "A(T T = " (T
A
Ć2
T = -1.
"
Ć2A(x) Ć Ćx) T
T = T A(T = -| |2A(x).
T
Ł Ł Ł Ł
1 1
Ć2śA ...AmAm+1...An = (-1)nśA ...AmAm+1...An.
T
n
1
n n
2
(x)
$(x) = E(x),
Ć$ Ć Ć(x)
T = $T T
E
Ć(x)
T (x)
Ć2(x) Ć Ćx)
T = T (T = | |2(x),
(x)
" " " " "
ĆT ĆT Ł
ĆA(x) = i C " A(-x), P ĆA(x) = -i C " A(-x),
P
Ł
T T
Ł
ĆT = i C " A(-x), P ĆA(x) = -i C " A(-x),
ĆA(x) ĆT Ł
P
T T
ĆT
Ćx
P = -x
"
= 1
C
T
" " " " "
Lę!+
Ć Ć
Lę!+ P
I I
Ł
I(x)
(x) = .
I(x)
Ł
(x)  (x) = U(x) U
4 4
 (x) I(x)
I(x)
Ł
A 0
Ć Ć
L(x) = S(L-1x), S = .
0 A-1
Lę!+
4 4 ł0
0 1
ł0 = .
1 0
4 4 2 2
22 ł0
a b d c
ł0 ł0 = ,
c d b a
a, b, c, d 2 2
ł0
a b
(ł0)2 = 1
c d
ł0 a = d b = c a = -d b = -c
" " " " "
a b
ł0 = .
b a
ł0
ł0S ł0 = S-1.
Ć, Ć
= P , T
I, I ԾI, ԷI
Ł Ł
(x) (x) = 0
-1(x) = 0
(x) = 0
(x)
(x)
(x)

UO
ԾI(x)
O(x) = UO .
ԷI(x)
Ł
(iDx + px)(x) = 0
" " " " "
" " " " "
-
ĆI(x) -I(P
Ćx)
P
P (x) = ił0
ĆI(x) = -I(P ,
Ćx)
P
Ł Ł
0 - I(x) "I(x)
C(x) = = ,
"
0 I (x)
I(x)
Ł Ł
Ćx)
ĆI(x) -"I(T
0 T
T (x) =
"
Ćx)
ĆI(x) = -I (T ,
0
T
Ł
Ł
UP = ił0,
0 -
UC = ,
0
0
UT = .
0
- 0
UCP = i ,
0
UCP T = ił5,
1 0
ł5 = .
0 -1
Ć Ć Ć Ć
P = P T = -T
ĆP ĆT
Ć Ć
T = -P
CP T
" " " " "
Ć Ć
P  T (x)
 (x) = U(x)
0
O(x) = UO (x)
0
U U-1U = 1
(x)
0
 O(x) = UUO U-1 (x) a" hO (x).
0
Ć
= P U-1
hP = UUP U-1,
hP UP =
Ć
 = T
U-1
hO = UUOU"-1.
U
U
hO = UUOUT
" " " " "
ł5
S ł0
ł5(x) = (x),  = ą1.

 = +1  = -1
1 0 I(x) I(x)
=
0 -1 I(x) -I(x)
Ł Ł
I(x) a" 0
Ł
I(x) I(x) a" 0
Ć
I(x) P 
Ł
Ć Ć Ć ĆT
Ć
Lę!+ T P P
1
P+ = (1 + ł5),
2
1
P- = (1 - ł5),
2

Ć"(x)j(x), i = 1, 2, 3, 4, j = 1, 2, 3, 4.
i
x
 Ć
Ć
Lę!+
Ł
I
ąI
Ć" = ,  = .
I
I Ł
Ć ą 
Ć" 
Ł Ł
ąAB, ąA, AB, A,
Ł
ąAB
A
A

F

F
Ći, Ć = Ć ł0,
i 4 4
Ć
Ć
LĆ = (SĆ) ł0 = Ć S ł0 = Ć ł0ł0S ł0 = ĆS-1,
ĆĆ
P = (ił0Ć) ł0 = -iĆ ł0ł0 = -iĆł0.
Ć
LĆi = ĆS-1iS,
ĆĆi
P = -iĆł0iił0 = Ćł0ił0.
ł0ił0 = P i, P = ą1,
ĆĆi
P = P Ći
ĆĆł5i = Ćł0ł5ił0 = -Ćł5ł0ił0 = -P Ćł5i,
P
i ł5
Ć
Lę!+
S-1iS = aijj,
j
aij i
cjj = 0
j
ci
Ć
LĆi = ĆS-1iS = aijĆj
j
Ć
LĆł5i = ĆS-1ł5iS = Ćł5S-1iS = aijĆł5j.
j
S = 1
Ć
LĆ = ĆS-1S = Ć,
ĆĆ
P = Ćł0ł0 = Ć,
P = ł5

V

a b
 = ,
V
c d
Ł Ł
Ć  = AaAB + AbA + ąAc B + ąAd.
V B Ł Ł
AB A

a = d = 0.
Ł
 AbA ąAc B
V Ł
AB
bA c
Ł
AB
b c
b = ei {1, -}, c = ei {1, },
b c [0, 2Ą)
Ć
Lę!+ Ć 
V
0 c
ł0 ł0 = ,
V
b 0
b = c
b = c = 0
0 

 a" ł = ,
V
 0
ł
Ć 
A
 = ł5ł,
A
i
 =  a" (łł - łł) .
T
2

i 0 k 0
0i = -i , ij = ijk ,
0 i 0 k
ijk
Ć
T
Ćł
ĆS-1łS =  Ćł = Ć ł.
 
Ć 
S-1łS =  ł.


S-1 S
i
  = (S-1łSS-1łS - S-1łSS-1łS).
2

 ł5
" " " " "
16
S = 1, P = ł5,  = ł,  = ł5ł,  = ,
V A T
Ći
ił0
Ć2
ł0 P = 1
" " " " "
Ć(x) (x)

x -1x
i 
 i = UiU-1
ł
ł
0 1 0 -
ł0 = , ł = .
1 0  0
ł
łł + łł = 2g.
łłł = -2ł
łłłł = 4g
" " " " "
ł
ł
U
ł = UłU-1, = 0, 1, 2, 3.
ł
U = ł5 U = ł0
" " " " "
ł5 ł
ł5 = ił0łxłyłz.
ł5 ł
łł5 + ł5ł = 0, = 0, 1, 2, 3.
i
ł
ł ł5
ł = ł.
U
ł a" (UłU-1) = Uł U = UłU = ł.
a = ał,
/
a
a/ + /a = 2ab
/b b/
" " " " "
UC = iły, UT = łxłz, UCP = ł0ły.
ł = UłU-1
U
1
S =
2
1
S =
2
p
p0 - pz -px + ipy
pA = = (p0 - )A
-px - ipy p0 + pz
p0 + pz px - ipy
pA = = (p0 + )A.
px + ipy p0 - pz
p = i"
Ć
1957
1957
1997
1997
Ł
pBAA(x) = 0.
Ć
Ł
pAA(x) = 0.
Ć
ś+ = I, ś- = I,
Ł
(p0 ą Ć)śą(x) = 0.
Ć
śą
 = "1
(p0 " Ć)
Ć
( Ć)2 = Ć2
ppśą = 0,
Ć Ć
śą(x) = uą(p)e-ipx.
i"e-ipx =
pe-ipx
2
p0 = ą = ą| |.
śą
(p0 ą )uą(p) = 0.
1
S =
2

 = .
2| |
p0 = | | > 0
| |
(1 ą 2)uą = 0.
I = ś-
1
( = + ) I = ś+ ( =
Ł
2
1
- )
2

-
 = ą1  = 0
p0 = -| |
(1 " 2)uą = 0.
ś+
(1 - ł5)
0 0 I 0
(1 - ł5) = 2 = 2 .
0 1 I I
Ł Ł
(1 + ł5)
śą(x)
śą(x)
ś+ ś-
T CP CP T
ĆI(x) T " Ćx) T Ćx), ĆI(x) T Ćx) T " Ćx).
T = I (T = "I(T T = - "0(T = + I (T
Ł
Ł
Ćśą(x) T " Ćx),
T = śą(T
"
(-p0 " pxx ą pyy " pzz)śą(x) = 0,
Ć Ć Ć Ć
p
Ć
y t -t p0
Ć
Ćx
T x
"
Ćx)
(p0 " pxx ą pyy " pzz)śą(T = 0.
Ć Ć Ć Ć
= iy
T T
"
Ćx)) Ć Ćśą(x)
(p0 ą pxx ą pyy ą pzz)(ą śą(T = (p0 ą )T = 0.
Ć Ć Ć Ć
T
ĆI(x) " Ćx) C Ćx), ĆI(x) Ł Ćx) C " Ćx).
P = -iI (P = -i "I(P P = -i"I(P = i I (P
Ł
Ł
-
"
Ćx)
(-p0 ą pxx " pyy ą pzz)śą(P = 0.
Ć Ć Ć Ć
"i
c
"
Ćx) Ć Ćśą(x)
(-p0 " pxx " pyy " pzz)("i )śą(P = -(p0 ą )P = 0,
Ć Ć Ć Ć
c
CP
CP T
ĆT
Ćśą(x) C "
P = "i śą(-x).
T
"
" x -x
C
T
ĆT
Ćśą(x)
(p0 ą )P = 0.
Ć
Ć Ć
T P
1
m
2
e-ipx
2
p0 = ą + m2.
ĆI(P
Ćx)
I(x) I(x) = -iP
Ł
(p0 +  Ć)(x) = m1(x),
Ć
m1
(p0 -  Ć) ( Ć)2 = Ć2
Ć
pp(x) = m1(p0 -  Ć)(x)
Ć Ć Ć
(p0 -  Ć)(x) = m2(x),
Ć
m2
m2 = .
m1
 
1 1
m0 = (m1 + m2), m = (m1 - m2),
2 2
pł(x) = (m0 + mł5)(x).
Ć
Ć(x)
Ć(x)pł(x) = m0Ć(x)(x) + mĆ(x)ł5(x).
Ć
m = 0,
m1 = m2 m0 = m
(p - m)(x) = 0.
/
Ć
(p - m)
/
Ć
ĆAPCC = m2A
Ć
P
1
Ć
 = PCC
m
" " " " "
(p - qA - m)(x) = 0,
/ /
q E
m H" 0.5
" " " " "
(x)
ł0 ł
 (x)(-p0ł0 - ł - qA0ł0 - q ł - m) = 0
Ć
4 4
i -i
p = pj  (x)
Ćj Ć
-ł0
!
(x)( / +qA + m) = 0.
p /
"
-i
"x
1 1
"
px = -i"x
Ć
" " " " "
(x)
(x)
!
(x) p (x) + (x)p = i"[(x)ł(x)] = 0.
/ /(x)
J = N(p)(x)ł(x),
N(p)
(x)ł0(x) =  (x)(x) e" 0.
J0
J0
"(x)
i = $(x).
"t
"(x)
ił0 = (ł Ć + m)(x).
"t
ł0
$ = ą Ć + m,
ą = ł0ł,  = ł0.
ąi
0 1 0 -i i 0
ąi = = .
1 0 i 0 0 -i
p0 > m p0 < -m
2m
1021
p0 <
-m p0 > m
1
m
4 10-11
m-1
e
10-8
10-13
O = P, C, T
CP CP T O
O O(x)
(x) O(x)
-

Ć
P
-1
UP (p0ł0 + Ćł - m)UP P (x) = 0
Ć
UP = ił0 ł
(p - m)P (x) = 0.
/
Ć
P
O(x)
I
0 UO

" " " " "
z

-1
UC(-p0ł0 + pxłx - pyły + pzłz - m)UC C(x) = 0.
Ć Ć Ć Ć
p = i"
Ć
ły UC = iły
ł
(p - m)C(x) = 0.
/
(p - qA - m)(x) = 0,
/ /
(p + qA - m)C(x) = 0,
/ /
qA A(x)
/
p
Ć
-q
A
" " " " "
4
"
J0 = N  = N i i,
i=1
4
0 "C C
JC = NC C = N i i ,
i=1
C = iły" C =
-iT ły = +iT ły
0 "
JC = NiT łyiły" = NT " = N ii .
i
 
N NC = -N
J0
p0 > 0
e-ipx
p0ł0u( ) = mu( ).
p0
u
p0 = m

u( ) = .

= 0
Ću(
P ) = ił0u( ) = iu( ).
uC( )
Ć
P
Ć(u(
P )uC( )) = iu( )iuC( ) = -(u( )uC( )).
Ć2
P = +1
1
s =
2
t -t
-1
UT (p0ł0 + pxłx - pyły + pzłz - m)UT T (x) = 0.
Ć Ć Ć Ć
UT = łxłz ł
(p - m)T (x) = 0.
/
C P
C, P T
CP CP T
CP T
CP
C, P, T
O(x)
(p)
(x) = u(p)e-ipx, u(p) = ,
(p)
p
(p0 +  ) = m, (p0 -  ) = m.


" " " " "

  = 1.
 

u(p) = Ną p0- ,

m
N+ p0 > 0 N- p0 < 0

1
  = 2| |,  = ą .
2

1
uą(p) = Ną p0-2| | ,  = ą , ąp0 = E > 0.
 2
m
p0 = ąm cosh y, | | = m sinh y,

uą(p) = Ną .
ąe"2y
p0 > 0 y 1
1
 = +  = -1
2 2
|y| 1
m2
2p2
0
" " " " "
 = u(p)u(p) = ą2|Ną|2e"2y.
p0
Ną = eąy,
(x)
eąy
ą(x) = e-ipx.
ąe"y

u+(p) =

" " " " "
p0 > 0
= y = 0

u(p) = , J0 = u u = 2,

=
J
{2, }
p
J = 2 .
m
J
" " " " "
p0 < 0
0 -
C
C
 (x) a" uC(pC)e+ipx = u"(p)e-ip x,
 
0
pC = -p
pC
"
0 - ey 
uC(pC) = u"(p) = .
  "
0 e-y 
" "
i = iyi = -i , i = x, y, z.
-
" "
  = -2| | ,
" "
  = 2| | .
C C
"
 
C
" C
 =  .
C
ey
C
C
 (x) = e-ip x,
C
e-y
p0 > 0
p pC  C
C(x)

łD

łS

łD = UłSU ,
1 1
1 1
0 5
"
U = U = " = (łS + łS).
1 -1
2 2
1 0
0 5
łD = = łS,
0 -1
0 
łD = = -łS,
- 0
0 1
5 0
łD = = łS.
1 0
Ć(p)
(x) = N e-ipx.
(p)
Ć 
Ć 
(p0 - m)Ć =  , (p0 + m) =  Ć.
p0 = E > 0.
Ć
 Ćs
zĆs = 2sĆs, Ć Ćs = 1.
s
1
s = ą
2
Ćs z s
Ćs
Ćs 1
+,s(x) = Ns  e-ipx, p0 > 0, s = ą .
Ćs
2
E+m
| |
| | = 1
E
s  s 1
s
+,s(x)
+,s+,s = 2.
 Ćs
1 0
2
2 = +,s+,s = Ns Ć , Ć

s s
0 -1 Ćs
E + m
E+m
2
( )2 = = E2 - m2 = (E + m)(E - m).
Ns
E + m
Ns = .
m
E + m Ćs 1
+,s(x) = e-ipx, p0 > 0, s = ą .

Ćs
m 2
E+m
p0 = -E < 0.
s
zs = 2ss,  s = 1.
s
s
z
Ćs

1
- s
-,s = Ns E+m e-ipx, p0 < 0, s = ą ,
s 2
Ns
2 2m
-,s-,s = -Ns .
E + m
-2
E + m
Ns = Ns = ,
m

E + m - s
1
E+m
-,s = e-ipx, p0 < 0, s = ą .
m s 2
U
s
Ćs
" " " " "
UC
0
y
UC = iłD = .
- 0
"
E + m
0
-E+m "
C
s
-,s(x) = e+ipx
- 0
m
"
s
"
i =
-i
E + m + "
C s
-,s(x) = e+ipx.

m - "
s
E+m
z " = -2s ".
s s
" = Ć-s.
s
C
p = -p
C
E + m +Ć-s
C
C
s (x) = e-ip x,
 c
m Ć-s
E+m
pC0 = -p0
= - z -s
C
1
S =
2
p0 > 0
A( )
( , t) = e-iEt, E = p0 > 0.
B( )
(E - qA0 - m)A( ) - ( Ć - q )B( ) = 0,
( Ć - q )A( ) - (E - qA0 + m)B( ) = 0,
A
m q
q = -e
m
| | |qA| E m
ENR = E - m
2
m
2m
B( )
1
m
B( )
1
(E - qA0 - m)A( ) - ( Ć - q ) ( Ć - q )A( ) = 0.
E - qA0 + m
(E-qA0+m)-1 ( Ć-
q )
1
$A(x) = ENRA(x), $ = ( Ć - q ) ( Ć - q ) + qA0.
ENR - qA0 + 2m
q A0
1 1
= + O(m-2)
ENR - qA0 + 2m 2m
[( Ć - q )]2
$ = + qA0.
2m
j Ć = Ć -q
( Ć)2 = Ć2
( Ć)2 = Ć2 + i( Ć Ć).
$ = $0 + $1,
$0 $1
Ć
[( Ć - q ) ( Ć - q )] = iq(" + "),
" = - ",
= (" )
1
= 
2
q
$1 = - .
m
2.4
$1
104
ą5.8 10-5
10

Emagn = - ,
q
= g , g = 2.
2mc
g
g = 1
( = )
3 10-26
=
$2 = $2,1 + $2,2 + $2,3,
( Ć2)2
$2,1 = - ,
8m3
q
$2,2 = - ( Ć),
4m2
q
$2,3 = - (" ).
8m2
q = -e
1
ą = e2 H" .
137
e2
ą = ą = 10-7e2
4Ą
(x)
$2
E2 = dx "(x)$2(x).
$2,i
2
m2
2 2
( )2
2
E( ) = + m2 = m + - + .
2m 8m3
$2,1
| |
ą
m
$2,1 mą4
$2,2
"V (r)
= -"V (r) = - .
r "r
$2,2
q "V (r) q "V (r)
Ć.
$2,2 = ( Ć) =
4m2r "r 2m2r "r
= +
Ć2 Ć2
2 2 2 1 1 3
= (1 + ) =
2 2 4
1 3 1 3
= J(J + 1) - L(L + 1) - = [(J - L)(J + L + 1) - ].
2 4 2 4
1
J = L + J =
2
1
L-
2
L = 0
qV (r)
ą
-
r
ą
$2,2 =
2m2r3
r | |
1
H2,1 r H"
mą
mą4
$2,3
"
4Ą
" = 4Ą|e|3( ).
$2,3
Ąą
$2,3 = 3( ).
2m2
Ąą
dx "( )$2,3( ) = |(0)|2,
2m2
|( )|2
1
r
mą
|(0)|2 H" m3ą3.
mą4
L = 0 ( ) =

S
L = 0
1
m
e+e- 2m
1
m
1
m
$2,3
ij
xi = 0, xixj =
3m2
ij 
( )2 = (x1)2 + (x2)2 + (x3)2

3
"V ( ) 1 "2V ( )
V ( +  ) = V ( ) + xi + xjxk ,
"xi 2 "xj"xk
i=1 j,k
1 q
V ( +  ) - V ( ) = "2V ( ) = - " .
6m2 6m2
$2,i, i = 1, 2, 3
mą2 mą4 3 n
ENR(n, J) = - + - ,
2n2 n4 8 2J + 1
1
n = 1, 2, . . . J = L ą
2
ą
ą4
0, 511
mą2 H" 27, 2 , mą4 H" 0, 00145 ,
S L = 0
L = 0

J
2P n = 2, L = 1
"E H" 4, 53 10-5
 H" 2, 74
S
1S 1 5.9 10-6
2
21
21
n
J 2S 1 2P 1
2 2
2P 1 4 10-6
2
29 1040
A0
qA0 = V (z) V (z) = 0
z < 0 V (z) = V0 > 2m z > 0
z = 0
z = 0
E
m < E < V0 - m.
pz > 0
1
z +
2
z > 0
5.6
0
e-ip t
z -"
"
1
in+(z) pz = + E2 - m2 Sz = +
2
Rą(x) -pz z
1 1
+ -
2 2
z < 0
z z z
(z) = uin+(pz)eip z + R+uR+(-pz)e-ip z + R-uR-(-pz)e-ip z, z < 0,

uin+
uRą

z < 0
ł ł ł ł ł ł
1 1 0
ł ł ł ł ł ł
0 0 1
z z z
ł ł
(z) = eip z+R+ ł -pz ł e-ip z+R- ł 0 ł e-ip z, z < 0.
pz
ł łł ł łł ł łł
E+m E+m
pz
0 0
E+m
z > 0
+z E z
ą1
2
V0
E E - V0 pz
p z = (E - V0)2 - m2.
p z(E, V0, m)
ł ł ł ł
1 0
ł ł ł ł
0 1
z z
(z) = T+ ł p z ł eip z + T- ł 0 ł eip z, z > 0,
ł łł ł łł
E-V0+m
-p z
0
E-V0+m

-" < z < "
Rą Tą (z) z = 0
p z E + m
r = .
pz E - V0 + m
r
pz p z
(E + m)(V0 - E + m)
r = - .
(E - m)(V0 - E - m)
m2 - E2 + V0E + V0m
m2 - E2 + V0E - V0m
r < -1.
z = 0
1 + R+ = T+
R- = T-
1 - R+ = rT+
R- = -rT-,
pz
E+M
r < -1
R- = T- = 0.
2 1 - r
T+ = , R+ = .
1 + r 1 + r
z
Jin JR JT
2pz 2pz 2p z
z z 2 z 2
Jin = , JR = -R+ , JT = T+ .
E + m E + m E - V0 + m
2
z z z z
JR 1 - r JT 4r -JR + JT
= - , = , = 1.
z z z
Jin 1 + r Jin (1 + r)2 Jin
z
JR
e+e-
p2 = 0

e+e-
1
m
2m
p2 = m2
c3
TH = ,
4kBMG
kB M G
M
TH H" 3.9 10-7 K,
M
M 2 1030
106
1023
4 1026
1012

Z Z + 1
Z + 2
76
Ge




(x)
C(x)
(x)
(x)
1 1
" ((x) + C(x)), " - C(x))
((x)
2 i 2
" " " " "



Wyszukiwarka

Podobne podstrony:
Wykład 3 Podstawy mechaniki kwantowej
Wyklad Mechanika Kwantowa Wstep
Mechanika Kwantowa II 05 Bugajski p39
wykład 3 (5 ) III mechaniczne ocz 1 2010
BUD WODNE Wykład 6 analiza mechaniczna filtracja MES
B03 Mechanika kwantowa (19 27)
Wyklad 5 zderzenia w mechanice
II Mechanika kwantowa
wstep do mechaniki kwantowej
S Kryszewski Mechanika kwantowa zadania
6 Mechanika kwantowa
b04 mechanika kwantowa d
wyklad 2 07 mechanika nieba
B04 Mechanika kwantowa (28 35)

więcej podobnych podstron