Wołek
Zbadać stabilność układu zakmniętego
$$G_{1}(s) = \frac{1}{s + 1}\text{\ \ \ \ \ \ \ }G_{2}(s) = \frac{4}{s + 2}\text{\ \ \ \ \ \ \ \ \ \ \ }G_{3}(s) = \frac{2}{s}\text{\ \ \ \ \ \ \ \ \ }G_{4}(s) = \frac{3}{s}$$
$$G_{z}(s) = \frac{\frac{G_{1}(s)}{1 + G_{1}(s)}*\left( G_{2}(s) + \frac{G_{3}(s)}{G_{1}(s)} \right)}{1 + \left\lbrack \frac{G_{1}(s)}{1 + G_{1}(s)}*\left( G_{2}(s) + \frac{G_{3}(s)}{G_{1}(s)} \right) \right\rbrack*G_{4}(s)}$$
$$G_{z}(s) = \frac{\frac{\frac{1}{s + 1}}{1 + \frac{1}{s + 1}}*(\frac{4}{s + 2} + \frac{\frac{2}{s}}{\frac{1}{s + 1}})}{1 + \left\lbrack \frac{\frac{1}{s + 1}}{1 + \frac{1}{s + 1}}*(\frac{4}{s + 2} + \frac{\frac{2}{s}}{\frac{1}{s + 1}}) \right\rbrack*\frac{3}{s}} = \frac{\frac{\frac{1}{s + 1}}{\frac{s + 2}{s + 1}}*(\frac{4}{s + 2} + \frac{2(s + 1)}{s})}{1 + \frac{\frac{1}{s + 1}}{\frac{s + 2}{s + 1}}*\left( \frac{4}{s + 2} + \frac{2(s + 1)}{s} \right)*\frac{3}{s}} = \frac{\frac{1}{s + 2}*\frac{2\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4ss(}{\left( s + 2 \right)*s}}{1 + \frac{1}{s + 2}*\frac{2\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4ss(}{\left( s + 2 \right)*s}*\frac{3}{s}} = \frac{\frac{2\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4ss(}{\left( s + 2 \right)^{2}*s}}{1 + \frac{6\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 12ss(}{\left( s + 2 \right)^{2}*s^{2}}} = \frac{\frac{2\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4ss(}{\left( s + 2 \right)^{2}*s}}{\frac{s^{4} + 4s^{3} + 10s^{2} + 30s + 12}{\left( s + 2 \right)^{2}*s^{2}}} = \frac{2s\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4s^{2}\ }{s^{4} + 4s^{3} + 10s^{2} + 30s + 12}\ $$
$$G_{z}(s) = \frac{2s\left( ss + 1 \right)*(s\text{sk} + \hat{})2) + 4s^{2}\ }{s^{4} + 4s^{3} + 10s^{2} + 30s + 12}$$
Badamy stabilność układu
$$G_{z}\left( s \right) = \frac{L\left( s \right)}{M(s)} = \frac{L(s)}{s^{4} + 4s^{3} + 10s^{2} + 30s + 12}$$
M(s) = s4 + 4s3 + 10s2 + 30s + 12
2. Wszystkie wyznaczniki Δi muszą być większe od zera aby układ był stabilny
30 | 12 | 0 |
---|---|---|
4 | 10 | 30 |
0 | 1 | 6 |
Δ1=a1=30
Δ2=
a1 | a0 |
---|---|
a3 | a4 |
30 | 12 |
---|---|
4 | 10 |
Δ2= 252
Δ3=
30 | 12 | 0 |
---|---|---|
4 | 10 | 30 |
0 | 1 | 6 |
Δ3=612
Δi >0 zatem układ jest stabilny
Zbadać własności dynamiczne układu nieliniowego przedstawionego na rys.
$${x\left( t \right) = Asin\omega t\backslash n}{B = 1\ \ \ \ \ \ \ \ \ \ G\left( s \right) = \frac{1}{s^{3} + 2s^{2} + s + 1}\backslash n}{I = \frac{4B}{\text{πA}}\backslash n}{k\left( s \right) = G\left( s \right)*I\left( A \right)\backslash n}{G_{z} = \frac{I\left( A \right)G\left( s \right)}{1 + I\left( A \right)G\left( s \right)}\backslash n}$$