Gliwice dnia 04.03.2010
Sprawozdanie
Politechnika Śląska
Wydział Elektryczny
Elektronika i Telekomunikacja
Semestr IV grupa ST/OPTO
Przedmiot
Metrologia
Temat:
Częstościomierze i czasomierze cyfrowe
Sekcja I
Barwinek Wojciech
Czyżewski Sławomir
Ploch Adam
Wstęp teoretyczny
Cyfrowy pomiar częstotliwości opiera się na metodzie zliczania impulsów uformowanych z przebiegu okresowego o częstotliwości fx w ściśle określonym wzorcowym przedziale czasu Tp. Schemat blokowy częstościomierza wykorzystującego powyższą metodę przedstawiono na rysunku poniżej
Cykl pracy układu jest następujący. Układ sterujący powoduje zerowanie licznika (skasowanie poprzedniego stanu) po czym otwiera bramkę na czas Tp określony przez aktualnie wybrany przełącznikiem P zakres pomiarowy. Źródłem częstotliwości wzorcowych jest generator kwarcowy wraz z dzielnikiem częstotliwości. Impulsy o częstotliwości mierzonej fx przekazywane są na czas otwarcia bramki elektronicznej (Tp) do licznika, gdzie są zliczane. Liczba zliczonych impulsów n w czasie Tp jest proporcjonalna do częstotliwości mierzonej:
Schemat blokowy częstościomierza cyfrowego.
Cyfrowy pomiar czasu odbywa się na zasadzie pomiaru liczby impulsów generatora wzorcowego o znanym okresie Tw.
Cyfrowy miernik odstępu czasu, a) schemat blokowy, b) przebiegi czasowe
Impulsy elektryczne ograniczające odstęp mierzonego czasu Δt podawane są na wejścia układów formujących I i II. Mogą być one wytworzone automatycznie przez układ, w którym odstęp czasu mierzymy, bądź też przez osobę wykonującą pomiar. Impuls określający początek liczenia (t1) oraz impuls kończący liczenie (t2) wyznaczają – poprzez układ sterujący bramką – szerokość impulsu bramkującego równą czasowi mierzonemu Δt. Wobec tego:
gdzie: n – liczba impulsów wzorcowych zliczana przez licznik
Czas mierzony jest wielokrotnością okresu Tw generatora wzorcowego. Jeżeli np. częstotliwość tego generatora wynosi 100MHz, to wartość rozdzielczości czasu mierzonego wynosi 10-8s.
Cele ćwiczenia
W pierwszej części ćwiczenia wyznaczaliśmy częstotliwość graniczną częstościomierzo- czasomierza PFL-20 tzn. taką częstotliwość przy której niepewności pomiaru częstotliwości i okresu są sobie równe. W drugiej części ćwiczenia dokonywaliśmy pomiaru odcinka czasu na przykładzie pomiaru czasu trwania półokresu sygnału. Następnie dokonaliśmy wyżej wymienionych pomiarów dla przyrządu C570, dodatkowo wyznaczaliśmy dokładność pomiaru okresu tego miernika za pomocą pomiaru wielokrotności okresu.
Przebieg ćwiczenia i wyniki pomiarów
Wyznaczenie częstotliwości granicznych przyrządu PFL-20
Częstościomierz ustawiono zgodnie z instrukcja: sygnał z generatora został podany na wejście B, wybrano funkcję "CZĘSTOTLIWOŚĆ 1s", nastawiono automatyczny poziom wyzwalania we B, wciśnięto przycisk DZIELNIK B oraz wyciśnięto przycisk ZBOCZE
Sygnał generowany miał kształt prostokątny o amplitudzie 10Vpp
Regulując częstotliwość generowanego sygnału w zakresie od 100Hz do 100kHz według skali logarytmicznej odczytaliśmy następujące wskazania:
Częstotliwość generowana | Częstotliwość odczytana | δ f |
---|---|---|
Hz | Hz | % |
100 | 100 | 1 |
200 | 200 | 0,5000001 |
500 | 500 | 0,2 |
1000 | 1000 | 0,1 |
2000 | 2000 | 0,05 |
5000 | 5000 | 0,02 |
10000 | 10000 | 0,01 |
20000 | 20000 | 0,005 |
50000 | 50000 | 0,002 |
100000 | 99999 | 0,001 |
Podczas wyznaczania niepewności pomiaru częstotliwości skorzystano z następujących wzorów:
$f_{x} = \pm \frac{1}{t_{p}} \pm \frac{f_{w}}{f_{w}} \bullet f_{x}$ oraz $\text{δf} = \frac{f}{f} \bullet 100$
tp- czas otwarcia bramki
fw- częstotliwość wzorca
fw- dokładność wzorca
Przykładowe obliczenia dla 1000Hz:
$$f_{1000} = \pm \frac{1}{1} \pm \frac{5 \bullet 10^{- 7}}{5 \bullet 10^{6}} \bullet 1000 \approx 1$$
$$\delta f = \frac{1}{1000} \bullet 100 = 0,1$$
Częstościomierz ustawiono zgodnie z instrukcja: sygnał z generatora został podany na wejście B, ustawiono częstotliwość wzorcową 10Mhz, wybrano funkcję "OKRESOMIERZ - 1", nastawiono automatyczny poziom wyzwalania we B, wciśnięto przycisk DZIELNIK B oraz wyciśnięto przycisk ZBOCZE
Sygnał generowany miał kształt prostokątny o amplitudzie 10Vpp
Regulując częstotliwość generowanego sygnału w zakresie od 100Hz do 100kHz według skali logarytmicznej odczytaliśmy następujące wskazania:
Częstotliwość generowana | Okres odczytany | δ T |
---|---|---|
Hz | ms | % |
100 | 25 | 0,0008 |
200 | 5 | 0,004 |
500 | 0,9987 | 0,020 |
1000 | 0,5006 | 0,040 |
2000 | 0,5 | 0,04 |
5000 | 0,2 | 0,1 |
10000 | 0,1 | 0,2 |
20000 | 0,05 | 0,4 |
50000 | 0,02 | 1 |
100000 | 0,01 | 2 |
Ostatecznie zmieniono funkcję na "OKRESOMIERZ - 10", pozostałe parametry pozostawiono bez zmian. Otrzymane wyniki:
Częstotliwość generowana | Okres odczytany | δ T |
---|---|---|
Hz | ms | % |
100 | 1,00077 | 0,0020 |
200 | 0,75005 | 0,0027 |
500 | 0,49993 | 0,0040 |
1000 | 0,5 | 0,004 |
2000 | 0,5 | 0,004 |
5000 | 0,2 | 0,01 |
10000 | 0,1 | 0,02 |
20000 | 0,05 | 0,04 |
50000 | 0,02 | 0,1 |
100000 | 0,01 | 0,2 |
Podczas wyznaczania niepewności pomiaru okresu skorzystano z następujących wzorów:
$T = \pm \frac{\text{tw}}{k} \pm \frac{f_{w}}{f_{w}} \bullet T_{x}$ oraz $\delta T = \frac{T}{T} \bullet 100$
tw- czas otwarcia bramki
k-ilość badanych okresów
fw- częstotliwość wzorca
fw- dokładność wzorca
Wykreślono wykres niepewności w podwójnej sali logarytmicznej i zaznaczono częstotliwości graniczne:
fg1 ≈ 2kHz - Częstotliwość graniczna dla pomiaru 1 okresu
fg10 ≈ 7kHz - Częstotliwość graniczna dla pomiaru 10 okresu
Pomiar odcinka czasu miernikiem PFL-20
Sygnał z generatora został podany na wejście B częstościomierza, zwarto wejścia B i C, ustawiono częstotliwość wzorcową 10Mhz, wybrano funkcję "CZASOMIERZ", nastawiono automatyczny poziom wyzwalania wejścia B i C
Ustawiono wejście B na zbocze narastające zaś wejście C na opadające
Wykonano pomiary dla sygnałów sinusoidalnych, prostokątnych i trójkątnych o amplitudach 5Vpp i 10Vpp i 2 różnych częstotliwościach: 100Hz i 100kHz we wszystkich kombinacjach. Otrzymano następujące wyniki:
Amplituda | Częstotliwość | Kształt sygnału | Wartość poprawna |
---|---|---|---|
Sinusoida | Prostokąt | ||
Vpp | Hz | ms | ms |
5 | 100 | 3,8281 | 5,0025 |
5 | 100000 | 0,0052 | 0,0050 |
10 | 100 | 3,8381 | 5,0025 |
10 | 100000 | 0,0051 | 0,005 |
Wartości poprawne uzyskano poprzez wyznaczenie odwrotności częstotliwości badanej i przedzielenie wyniku przez 2(badaliśmy półokres sygnału)
Ustawiono wejście B na zbocze opadające zaś wejście C na narastające
Wykonano pomiary dla sygnałów sinusoidalnych, prostokątnych i trójkątnych o amplitudach 5Vpp i 10Vpp i 2 różnych częstotliwościach: 100Hz i 100kHz we wszystkich kombinacjach. Otrzymano następujące wyniki:
Amplituda | Częstotliwość | Kształt sygnału | Wartość poprawna |
---|---|---|---|
Sinusoida | Prostokąt | ||
Vpp | Hz | ms | ms |
5Vpp | 100 | 6,9 | 5 |
5Vpp | 100000 | 0,0068 | 0,005 |
10Vpp | 100 | 6,6 | 5 |
10Vpp | 100000 | 0,0066 | 0,005 |
Wartości poprawne uzyskano poprzez wyznaczenie odwrotności częstotliwości badanej i przedzielenie wyniku przez 2(badaliśmy półokres sygnału)
Wyznaczenie częstotliwości granicznych przyrządu C570
Sygnał z generatora został podany na wejście A, wybrano automatyczny zakres pomiarowy, wybrano funkcję "FUNCTIONS - FREQA", nastawiono zerową wartość poziomu wyzwalania wejścia A, przełączono dzielnik napięcia w pozycję "x1" a przełącznik rodzaju sprzężenia na "=", wybrano zbocze narastające "┌"
Sygnał generowany miał kształt prostokątny o amplitudzie 10Vpp
Regulując częstotliwość generowanego sygnału w zakresie od 100Hz do 100kHz według skali logarytmicznej odczytaliśmy następujące wskazania:
Częstotliwość generowana | Częstotliwość odczytana | δ f |
---|---|---|
Hz | Hz | % |
100 | 101 | 0,99 |
200 | 201 | 0,50 |
500 | 500 | 0,20 |
1000 | 1001 | 0,10 |
2000 | 4001 | 0,025 |
5000 | 6171 | 0,016 |
10000 | 10000 | 0,010 |
20000 | 20001 | 0,005 |
50000 | 50000 | 0,002 |
100000 | 200000 | 0,001 |
Podczas wyznaczania niepewności pomiaru częstotliwości skorzystano z następujących wzorów:
f = ±DOKLADNOSC WZORCA ± 1C oraz $\delta f = \frac{f}{f} \bullet 100$
Sygnał z generatora został podany na wejście B, wybrano automatyczny zakres pomiarowy, wybrano funkcję "FUNCTIONS - PERB", nastawiono zerową wartość poziomu wyzwalania wejścia B, przełączono dzielnik napięcia w pozycję "x1" a przełącznik rodzaju sprzężenia na "=", wybrano zbocze narastające "┌"
Sygnał generowany miał kształt prostokątny o amplitudzie 10Vpp
Regulując częstotliwość generowanego sygnału w zakresie od 100Hz do 100kHz według skali logarytmicznej odczytaliśmy następujące wskazania:
Częstotliwość generowana | Okres odczytany | δ T |
---|---|---|
Hz | ms | % |
100 | 10 | 0,33 |
200 | 5,0001 | 0,35 |
500 | 2 | 0,43 |
1000 | 1,0001 | 0,56 |
2000 | 0,5001 | 0,82 |
5000 | 0,2 | 1,60 |
10000 | 0,1001 | 2,90 |
20000 | 0,05 | 5,5 |
50000 | 0,02 | 13,3 |
100000 | 0,01 | 26,3 |
Podczas wyznaczania niepewności pomiaru okresu skorzystano z następujących wzorów:
T = ±DOKLADNOSC WZORCA ± BLAD TRYGERA(mniej niz 0, 3%) ± 1C oraz $\delta T = \frac{T}{T} \bullet 100$
Wykreślono wykres niepewności i zaznaczono częstotliwość graniczną:
fg ≈ 300Hz - Częstotliwość graniczna dla pomiaru 1 okresu
Wyznaczenie dokładności pomiaru okresu za pomocą pomiaru wielokrotności liczby okresów
Sygnał z generatora został podany na wejście B, wybrano funkcję "PERAVGB", nastawiono zerową wartość poziomu wyzwalania wejścia B, przełączono dzielnik napięcia w pozycję "x30" a przełącznik rodzaju sprzężenia na "=", wybrano zbocze narastające "┌"
Sygnał generowany miał kształt prostokątny o amplitudzie 10Vpp, częstotliwość sygnału 1MHz
Dokonano pomiaru kolejno 10,100,1000 i 10000 okresów przebiegu wybierając tryb poprzez wciśniecie odpowiedniego przełącznika MANUAL. Otrzymano następujące wyniki:
Czas pomiaru | s | 0,01 | 0,1 | 1 | 10 |
---|---|---|---|---|---|
Długość okresu | μs | 1 | 100 | 1000 | 10000 |
Dokonano pomiaru częstotliwości 1MHz metodą przedstawioną w punkcie 3 uzyskując następujący wynik:
f1MHz = 200001(1)
Dwukrotnie większy pomiar niż spodziewany mógł być spowodowany niepoprawnym wyświetlaniem wyniku przez miernik(zamiast 1 miernik wyświetlił 2). Niestety pomiar ten uniemożliwia nam interpretację wyników uzyskanych w tej części ćwiczenia.
Pomiar odcinka czasu miernikiem C570
Sygnał z generatora został podany na równocześnie na wejście A i B częstościomierza, wybrano automatyczny zakres pomiarowy, wybrano funkcję pomiaru odstępu czasu(TIA + B), nastawiono zerową wartość wyzwalania wejść A i B, przełączono dzielnik napięcia w pozycję "x1" zaś przełącznik rodzaju sprzężenia na "="
Ustawiono wejście A na zbocze narastające zaś wejście B na opadające
Wykonano pomiary dla sygnałów sinusoidalnych, prostokątnych i trójkątnych o amplitudach 5Vpp i 10Vpp i 2 różnych częstotliwościach: 100Hz i 100kHz we wszystkich kombinacjach. Otrzymano następujące wyniki:
Amplituda | Częstotliwość | Kształt sygnału | Wartość poprawna |
---|---|---|---|
Sinusoida | Prostokąt | ||
Vpp | Hz | ms | ms |
5Vpp | 100 | 5,065 | 5,002 |
5Vpp | 10000 | 0,0039 | 0,007 |
10Vpp | 100 | 5,002 | 5,077 |
10Vpp | 10000 | 0,0034 | 0,00501 |
Wartości poprawne uzyskano poprzez wyznaczenie odwrotności częstotliwości badanej i przedzielenie wyniku przez 2(badaliśmy półokres sygnału)
Ustawiono wejście A na zbocze opadające zaś wejście B na narastające
Wykonano pomiary dla sygnałów sinusoidalnych, prostokątnych i trójkątnych o amplitudach 5Vpp i 10Vpp i 2 różnych częstotliwościach: 100Hz i 100kHz we wszystkich kombinacjach. Otrzymano następujące wyniki:
Amplituda | Częstotliwość | Kształt sygnału | Wartość poprawna |
---|---|---|---|
Sinusoida | Prostokąt | ||
Vpp | Hz | ms | ms |
5Vpp | 100 | 3,122 | 4,997 |
5Vpp | 10000 | 0,0095 | 0,005 |
10Vpp | 100 | 6,557 | 7,343 |
10Vpp | 10000 | 0,0065 | 0,007 |
Wartości poprawne uzyskano poprzez wyznaczenie odwrotności częstotliwości badanej i przedzielenie wyniku przez 2(badaliśmy półokres sygnału)
Wnioski
Podczas wyznaczania częstotliwości granicznych przyrządów w 1 i 3 części ćwiczenia zaobserwowaliśmy, że dokładność pomiaru częstotliwości wzrasta wraz z częstotliwością mierzoną a dokładność pomiaru okresu spada wraz ze wzrostem częstotliwości. Dlatego też dla częstotliwości mniejszych niż częstotliwość graniczna zaleca się pomiar poprzez wyznaczenie okresu badanego przebiegu, zaś dla częstotliwości większych niż częstotliwość graniczna możemy mierzyć ją bezpośrednio.
w 2 i 5 części ćwiczenia dokonywaliśmy pomiaru odcinka czasu. Najdokładniej pomiar ten realizowany był dla przebiegów o kształcie prostokątnym, gorzej dla przebiegów sinusoidalnych i trójkątnych. Różne wyniki pomiaru związane są z histerezą wyzwalania, niepewność pomiaru rośnie odwrotnie proporcjonalnie do stromości zbocza, na którym jest inicjowany pomiar dodatkowo wraz ze wzrostem mierzonej częstotliwości zmienia się rozdzielczość pomiaru, co również ma wpływ na ostateczny wynik oraz zwiększa wartość błędu pomiaru.