GRANICA FUNKCJI
$$\operatorname{}{\sqrt[n]{n} = 1}$$
$$\operatorname{}\left( 1 + \frac{1}{n} \right)^{n} = e,\ e = 2,718$$
$$\operatorname{}\sqrt[k]{1 + a_{n} = 1}\text{\ gdy\ kϵN\ i\ lim}a_{n} = 0$$
$$\operatorname{}{\sqrt[n]{a} = 1\ gdy\ a > 0}$$
$$\operatorname{}a^{n} = \left\{ \begin{matrix}
0\ gdy\ \left| a \right| < 1 \\
1\ gdy\ a = 1 \\
+ \infty\ gdy\ a > 1(nie\ istnieje\ a \leq - 1) \\
\end{matrix} \right.\ $$
$$\operatorname{}{\left( 1 + a_{n} \right)^{\frac{1}{a_{n}\ }} = e,\ gdy\ \operatorname{}{a_{n} = 0}\text{\ \ \ \ }}$$
$$\operatorname{}{\left( 1 + b_{n} \right)^{\frac{1}{b_{n}}} = e,\ gdy\ \operatorname{}{b_{n} = 0}\text{\ \ \ \ }}\operatorname{}{a_{n} = 0}\text{\ \ \ }a_{n} > 0\ \ a_{n} < 0$$ |
$\lim\frac{1}{a_{n}} = \ $ +∞ - ∞ |
---|---|
|an| = +∞ |
$$\operatorname{}{\frac{1}{a_{n}} = 0}$$ |
$$\left| a_{n} \right| < M\ \frac{\lim b_{n} = 0}{\lim\left| b_{n} \right| = \infty}$$ |
$$\frac{\lim\left( a_{n}\ \bullet \ b_{n} \right) = 0}{\lim\frac{a_{n}}{b_{n}} = 0}$$ |
|
-∞ |
lim|an| = ∞ i lim bn = 0 | lim(an•bn)= |
Albo
|
|
liman = limbn = 0 |
$$\lim\frac{a_{n}}{b_{n}} =$$ |
POCHODNE FUNKCJI
[f(x)∓g(x)]′ = f′(x) ∓ g′(x)
[f(x)•g(x)]′ = f′(x) • g(x) + g′(x) • f(x)
$$\left\lbrack \frac{\text{f\ }\left( x \right)}{\text{g\ }\left( x \right)} \right\rbrack^{'} = \ \frac{f^{'}\left( x \right)g\left( x \right) - f(x)g'(x)}{g^{2}(x)}$$
[c f(x)]’ = c f’(x) c ϵ R i f(x) jest różniczkowalna
f(x) | f’(x) |
---|---|
f(x)=c | f’(x) = 0 |
f(x) = x2 |
f′(x) = α • xα − 1 |
$$f\left( x \right) = \ \sqrt[n]{x}$$ |
$$f'\left( x \right) = \ \frac{1}{\text{n\ }\sqrt[n]{x^{n - 1}}}$$ |
f(x) = ax |
f′(x) = axlna |
f(x) = ex |
f′(x) = ex |
f(x) = sinx | f’(x) = cosx |
f(x) = cosx | f’(x) = sinx |
f(x) = x |
$$f^{'}\left( x \right) = \ \frac{1}{x\ln_{a}}$$ |
f(x) = lnx | $f^{'}\left( x \right) = \ \frac{1}{x}$ |
f(x) = arcsinx | $$f^{'}\left( x \right) = \ \frac{1}{\sqrt{1 - x^{2}}}$$ |
f(x) = arccosx | $$f^{'}\left( x \right) = \ \frac{- 1}{\sqrt{1 - x^{2}}}$$ |
f(x) = arctgx | $$f^{'}\left( x \right) = \ \frac{1}{x^{2} + 1}$$ |
f(x) = arcctgx | $$f^{'}\left( x \right) = \ \frac{- 1}{x^{2} + 1}$$ |
$$f\left( x \right) = \sqrt{g(x)}$$ |
$$f^{'}\left( x \right) = \ \frac{g'(x)}{2\sqrt{g(x)}}$$ |
f(x) = ln(g(x)) | $$f^{'}\left( x \right) = \ \frac{g'(x)}{g(x)}$$ |
f(x) = eg(x) |
f′(x) = eg(x) • g′(x) |