Granice funkcji:
$$\operatorname{}{a^{x} = \left\{ \begin{matrix}
+ \infty\ dla\ a > 1 \\
0\ dla\ a\epsilon(0,1) \\
\end{matrix} \right.\ }$$
$$\operatorname{}{a^{x} = \left\{ \begin{matrix}
0\ dla\ a > 1 \\
+ \infty\ dla\ a\epsilon(0,1) \\
\end{matrix} \right.\ }$$
ex = + ∞
ex = 0
lnx = + ∞
lnx = − ∞
$$\operatorname{}{arctgx = \ \frac{\pi}{2}}$$
$$\operatorname{}{arctgx = \ - \frac{\pi}{2}}$$
$$\operatorname{}{\frac{\sin{f(x)}}{f(x)} = 1}$$
$$\operatorname{}{\frac{\operatorname{tgx}{f(x)}}{f(x)} = 1}$$
$$\operatorname{}{\frac{\sin x}{x} = 1}$$
$$\operatorname{}{\frac{\operatorname{tg}x}{x} = 1}$$
$$\operatorname{}{{(1 + f(x)}^{\frac{1}{f(x)}} = e}$$
Logarytm naturalny:
ln x = e
Ale gdy masz równania typu: (gdzie a ϵR)
ln x =a ln x >a ln x <a
x= ea x> ea x< ea
Przykład:
ln x= - $\frac{3}{4}$
x = $e^{- \frac{3}{4}}$