Rok akademicki 2015/16
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERI ŚRODOWISKA
Budownictwo niestacjonarne II stopnia semestr I
PROJEKT NR 2 Z MECHNIKI KONSTRUKCJI
OBLICZENIE NIEWYZNACZALNEGO ŁUKU PARABOLICZONEGO METODĄ SIŁ
Opracował :
Damian Jany
$$\frac{f}{L} = \frac{\frac{13}{4}}{13} = \frac{1}{4} \geq \frac{1}{5}\mathrm{,\ wiec\ luk\ jest\ wyniosly}$$
$$\frac{h}{L} = \frac{1}{12} \leq \frac{1}{10}\mathrm{wiec\ w\ obliczeniach\ uwzgledniamy\ tylko\ wplyw\ M}$$
Równanie łuku parabolicznego:
$$y = \frac{4f}{L^{2}} x \left( L - x \right) = \frac{4 \frac{13}{4}}{13^{2}} x \left( 13 - x \right) = \frac{1}{13} x \left( 13 - x \right)$$
Kąt nachylenia stycznej do krzywej w danym punkcie:
$$tg\Phi = y^{'} = \frac{\text{dy}}{\text{dx}} = \frac{4f}{L^{2}} \left( L - 2x \right) = \frac{4 \frac{13}{4}}{13^{2}} \left( 13 - 2x \right) = \frac{1}{13} \left( 13 - 2x \right) = 1 - \frac{2x}{13}$$
$$\Phi = arctg\left\lbrack 1 - \frac{2x}{13} \right\rbrack$$
SSN=2
Układ równań kanonicznych:
$$\left\{ \begin{matrix}
\delta_{11} X_{1} + \delta_{12} X_{2} + \delta_{1P} = 0 \\
\delta_{21} X_{1} + \delta_{22} X_{2} + \delta_{2P} = 0 \\
\end{matrix} \right.\ $$
Układ podstawowy:
Stan X1 = 1
M1 + 1(2,3077−y) = 0
M1 = y − 2, 3077
$$M_{1} = \frac{1}{13} x \left( 13 - x \right) - 2,3077 = - \frac{1}{13}x^{2} + x - 2,3077$$
Stan X2 = 1
M2 + 1(3−x) = 0
M2 = −(3−x)
M2 = x − 3
Stan P
$$M_{P} = \left\{ \begin{matrix}
30\ \mathrm{dla\ x \in < 0;1 >} \\
0\ \mathrm{dla\ x \in < 1;3 >} \\
- 6 \frac{\left( x - 3 \right)^{2}}{2}\mathrm{dla\ x \in < 3};8\mathrm{>} \\
- 6 5 \left( x - 5,5 \right)\mathrm{dla\ x \in < 8};13\mathrm{>} \\
\end{matrix} \right.\ $$
Korzystam z metody Simpsona numerycznego całkowania:
$$\int_{a}^{b}{f\left( x \right)dx =}\frac{x}{3} \left( f_{0} + 4 f_{1} + 2 f_{2} + 4 f_{3} + \ldots + 2 f_{n - 2} + 4 f_{n - 1} + f_{n} \right)$$
x = 0, 5m
$$\delta_{11} = \sum\int_{x}^{}\frac{M_{1} M_{1}}{EI cos\Phi}dx = \frac{101,824}{\text{EI}}$$
$$\delta_{12} = \sum\int_{x}^{}\frac{M_{1} M_{2}}{EI cos\Phi}dx = \frac{- 66,825}{\text{EI}}$$
$$\delta_{22} = \sum\int_{x}^{}\frac{M_{2} M_{2}}{EI cos\Phi}dx = \frac{2495,786}{\text{EI}}$$
$$\delta_{1P} = \sum\int_{x}^{}\frac{M_{1} M_{P}}{EI cos\Phi}dx = \frac{3179,621}{\text{EI}}$$
$$\delta_{2P} = \sum\int_{x}^{}\frac{M_{2} M_{P}}{EI cos\Phi}dx = \frac{- 47773,437}{\text{EI}}$$
Otrzymane wartości podstawiam do równania kanonicznego:
$$\left\{ \begin{matrix}
\frac{101,824}{\text{EI}} X_{1} + \frac{- 66,825}{\text{EI}} X_{2} + \frac{3179,621}{\text{EI}}0 \\
\frac{- 66,825}{\text{EI}} X_{1} + \frac{2495,786}{\text{EI}} X_{2} + \frac{- 47773,437}{\text{EI}} = 0 \\
\end{matrix} \right.\ $$
X1 = −18, 998 kN
X2 = 18, 633 kN
Kontrola kinematyczna:
$\overset{\overline{}}{M} = - 1 + \frac{1}{3}*x$
OSTATECZNY WYKRES
x | y | y' = tgφ | φ | 1/cosφ | M1 | M2 | MP | d11 | d22 | d12 | d1p | d2p | M | M | kontr. kin. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0,000 | 1,000 | 0,7854 | 1,414 | -2,308 | -3,000 | 30,000 | 7,531 | 12,728 | 9,791 | -97,907 | -127,279 | 17,943 | -1,000 | -25,375575 |
0,5 | 0,481 | 0,923 | 0,7454 | 1,361 | -1,827 | -2,500 | 30,000 | 4,542 | 8,506 | 6,216 | -74,588 | -102,068 | 18,126 | -0,833 | -20,556456 |
1 | 0,923 | 0,846 | 0,7023 | 1,310 | -1,385 | -2,000 | 30,000 | 2,511 | 5,240 | 3,628 | -54,413 | -78,597 | 19,039 | -0,667 | -16,627102 |
1 | 0,923 | 0,846 | 0,7023 | 1,310 | -1,385 | -2,000 | 0,000 | 2,511 | 5,240 | 3,628 | 0,000 | 0,000 | -10,961 | -0,667 | 9,57195377 |
1,5 | 1,327 | 0,769 | 0,6557 | 1,262 | -0,981 | -1,500 | 0,000 | 1,214 | 2,839 | 1,856 | 0,000 | 0,000 | -9,317 | -0,500 | 5,87702286 |
2 | 1,692 | 0,692 | 0,6055 | 1,216 | -0,615 | -1,000 | 0,000 | 0,461 | 1,216 | 0,748 | 0,000 | 0,000 | -6,942 | -0,333 | 2,81431676 |
2,5 | 2,019 | 0,615 | 0,5517 | 1,174 | -0,288 | -0,500 | 0,000 | 0,098 | 0,294 | 0,169 | 0,000 | 0,000 | -3,836 | -0,167 | 0,75073435 |
3 | 2,308 | 0,538 | 0,4939 | 1,136 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 |
3,5 | 2,558 | 0,462 | 0,4324 | 1,101 | 0,250 | 0,500 | -0,750 | 0,069 | 0,275 | 0,138 | -0,207 | -0,413 | 3,817 | 0,167 | 0,70064019 |
4 | 2,769 | 0,385 | 0,3672 | 1,071 | 0,462 | 1,000 | -3,000 | 0,228 | 1,071 | 0,494 | -1,483 | -3,214 | 6,865 | 0,333 | 2,45158777 |
4,5 | 2,942 | 0,308 | 0,2985 | 1,046 | 0,635 | 1,500 | -6,750 | 0,421 | 2,354 | 0,996 | -4,482 | -10,593 | 9,143 | 0,500 | 4,78293468 |
5 | 3,077 | 0,231 | 0,2268 | 1,026 | 0,769 | 2,000 | -12,000 | 0,607 | 4,105 | 1,579 | -9,473 | -24,631 | 10,652 | 0,667 | 7,28788762 |
5,5 | 3,173 | 0,154 | 0,1526 | 1,012 | 0,865 | 2,500 | -18,750 | 0,758 | 6,324 | 2,189 | -16,417 | -47,426 | 11,392 | 0,833 | 9,60469086 |
6 | 3,231 | 0,077 | 0,0768 | 1,003 | 0,923 | 3,000 | -27,000 | 0,855 | 9,027 | 2,777 | -24,997 | -81,239 | 11,362 | 1,000 | 11,3955987 |
6,5 | 3,250 | 0,000 | 0,0000 | 1,000 | 0,942 | 3,500 | -36,750 | 0,888 | 12,250 | 3,298 | -34,630 | -128,625 | 10,563 | 1,167 | 12,3236892 |
7 | 3,231 | -0,077 | -0,0768 | 1,003 | 0,923 | 4,000 | -48,000 | 0,855 | 16,047 | 3,703 | -44,439 | -192,567 | 8,995 | 1,333 | 12,0287556 |
7,5 | 3,173 | -0,154 | -0,1526 | 1,012 | 0,865 | 4,500 | -60,750 | 0,758 | 20,488 | 3,940 | -53,191 | -276,591 | 6,658 | 1,500 | 10,1037804 |
8 | 3,077 | -0,231 | -0,2268 | 1,026 | 0,769 | 5,000 | -75,000 | 0,607 | 25,657 | 3,947 | -59,209 | -384,856 | 3,551 | 1,667 | 6,07347193 |
8,5 | 2,942 | -0,308 | -0,2985 | 1,046 | 0,635 | 5,500 | -90,000 | 0,421 | 31,650 | 3,652 | -59,758 | -517,902 | 0,425 | 1,833 | 0,81464114 |
9 | 2,769 | -0,385 | -0,3672 | 1,071 | 0,462 | 6,000 | -105,000 | 0,228 | 38,571 | 2,967 | -51,922 | -674,991 | -1,971 | 2,000 | -4,2227878 |
9,5 | 2,558 | -0,462 | -0,4324 | 1,101 | 0,250 | 6,500 | -120,000 | 0,069 | 46,533 | 1,790 | -33,041 | -859,069 | -3,635 | 2,167 | -8,6749734 |
10 | 2,308 | -0,538 | -0,4939 | 1,136 | 0,000 | 7,000 | -135,000 | 0,000 | 55,652 | 0,000 | 0,000 | -1073,289 | -4,569 | 2,333 | -12,109019 |
10,5 | 2,019 | -0,615 | -0,5517 | 1,174 | -0,288 | 7,500 | -150,000 | 0,098 | 66,048 | -2,540 | 50,806 | -1320,952 | -4,773 | 2,500 | -14,009518 |
11 | 1,692 | -0,692 | -0,6055 | 1,216 | -0,615 | 8,000 | -165,000 | 0,461 | 77,841 | -5,988 | 123,497 | -1605,464 | -4,245 | 2,667 | -13,768333 |
11,5 | 1,327 | -0,769 | -0,6557 | 1,262 | -0,981 | 8,500 | -180,000 | 1,214 | 91,153 | -10,518 | 222,727 | -1930,297 | -2,987 | 2,833 | -10,677158 |
12 | 0,923 | -0,846 | -0,7023 | 1,310 | -1,385 | 9,000 | -195,000 | 2,511 | 106,106 | -16,324 | 353,687 | -2298,967 | -0,998 | 3,000 | -3,9223096 |
12,5 | 0,481 | -0,923 | -0,7454 | 1,361 | -1,827 | 9,500 | -210,000 | 4,542 | 122,822 | -23,620 | 522,118 | -2715,012 | 1,721 | 3,167 | 7,41876935 |
13 | 0,000 | -1,000 | -0,7854 | 1,414 | -2,308 | 10,000 | -225,000 | 7,531 | 141,421 | -32,636 | 734,303 | -3181,981 | 5,172 | 3,333 | 24,379774 |
101,824 | 2495,786 | -66,825 | 3179,621 | -47773,437 | 1,15E-12 | ||||||||||
T | N | |
---|---|---|
0 | -0,258301 | 0,25830102 |
0,5 | 0,80542637 | 1,32161562 |
1 | 1,95237221 | 2,46718977 |
1,5 | 3,18549205 | 3,69775484 |
2 | 4,50587933 | 5,01414853 |
2,5 | 5, 91198021 | 6,41453388 |
3 | 7,3987148 | 7,8935298 |
3,5 | 6,23271991 | 10,6985226 |
4 | 4,97094284 | 13,1969679 |
4,5 | 3,61986415 | 15,3252145 |
5 | 2,19116063 | 17,0202467 |
5,5 | 0,70189464 | 18,2249183 |
6 | -0,8260032 | 18,893748 |
6,5 | -2,3670393 | 18,9982535 |
7 | -3,894131 | 18,5306608 |
7,5 | -5,3809239 | 17,5050677 |
8 | -6,804005 | 15,9557442 |
8,5 | -5,27726 | 13,932989 |
9 | -3,7894006 | 14,348961 |
9,5 | -2,3594365 | 14,7525897 |
10 | -1,0012809 | 15,0758311 |
10,5 | 0,27610226 | 15,3271649 |
11 | 1,46810458 | 15,5157822 |
11,5 | 2,57365163 | 15,6508543 |
12 | 3,59433261 | 15,7410332 |
12,5 | 4,53359777 | 15,7941577 |
13 | 5,39608338 | 15,8171201 |
Va | 18,633 |
---|---|
Ha | -18,998 |