KE=KS+KZ
KS=Kam+Kub+Kpg+Kkr
Kam=$\frac{C_{m} - C_{o}}{T_{\text{lat}}*h}$
Kub=$\frac{C_{s}*i_{\text{ub}}}{h}$
Kpg=$\frac{C_{m}*k_{\text{pg}}}{h}$
Kkr=$\frac{C_{s}*i_{\text{kr}}}{h}$
Kz=Kps+Kpł+Kez+Knp
Kps=(1+ksm)*zp*cp
Kpł=$\sum_{i = 1}^{n_{p}}{\left( c_{\text{ri}} + c_{\text{pi}}*\frac{D_{\text{pi}} - D_{m}}{D_{m}}*\frac{T_{07pi}}{T_{07m}} \right)*(1 + B_{\text{pi}})}$
Kez=$\sum_{i = 1}^{n_{z}}\frac{C_{\text{zi}}}{h_{\text{ei}}}$
Knp=$\frac{C_{m}*k_{n}}{T_{\text{lat}}*h}$
KEI=KE+KD
KD=Kjd*W07
T07=T08-T8
T8=T81+T82+T83
T04=T07-T7-T6-T5
T6=T61+T62
T02=T04-T4-T3
T4=T41+T42
T3=T31+T32+T33
T1=T02-T2
T2=T21+T22+T23
k02=$\frac{T_{1}}{T_{02}}$
k04=$\frac{T_{1}}{T_{04}}$
k07=$\frac{T_{1}}{T_{07}}$
k23=$\frac{T_{1}}{T_{1} + T_{23}}$
k31=$\frac{T_{1}}{T_{1} + T_{31} + T_{7}}$
W1=$\frac{Q_{c}}{T_{1}}$
W02=$\frac{Q_{c}}{T_{02}}$
W04=$\frac{Q_{c}}{T_{04}}$
W08=$\frac{Q_{c}}{T_{08}}$
Wt=0,1*v*a
Tc=$\sum_{}^{}t_{i}$=tład+tzryw+twył+tjał
n=$\frac{T_{1}}{T_{c}}$
W1=n*q=$\frac{T_{1}}{T_{c}}$*q
Tc=$\sum_{}^{}t_{i}$=t1+t2+t3+t4+t5
n=$\frac{T_{1}}{T_{c}}$
W1=n*q0=$\frac{T_{1}}{T_{c}}$*q0
Yp=0,2*Qc
R-F=0
G-Y=0
F*rd-Y*e=0
F=Y*$\frac{e}{r_{d}}$=Y*f=G*f
f=$\frac{e}{r_{d}}$
F*rd=Y*e
Mn-P*rd=0
Pn=Mn/rd
Pϕ=Y*ϕ
Y=G
Pϕ=G*ϕ
Pn=P+F
Y=G
F=Y*f=G*f
Pϕ=Y*ϕ
Pn≤Pϕ=Y*ϕ=G*ϕ
Pu=Pn-F1-F2-Gc*sinα=Pn-(Yp+Yt)*f-Gc*sinα
Pu=Pn-F-Gc*sinα=Pn-Y*f-Gc*sinα
Vt=ω*rd
Vt=ω*rk
δ=$\frac{V_{t} - V}{V_{t}}$*100%
V=Vt*(1-$\frac{\delta}{100})$
ϕ0=$\frac{P_{n}}{Y}$
Pn=Fp+Ft+Gcx+Pb+Px
Pn=$\frac{M_{n}}{r_{t}}$=$\frac{M_{s}*i*\eta_{m}}{r_{t}}$=$\frac{N_{s}*i*\eta_{m}}{r_{t}*\omega_{s}}$
Vt=ωt*rt=$\frac{\omega_{s}*r_{t}}{i}$
ωs=$\frac{V_{t}*i}{r_{t}}$
Pn=$\frac{N_{s}*i*r_{t}*\eta_{m}}{V_{t}*i*r_{t}}$=$\frac{N_{s}*\eta_{m}}{V_{t}}$
Ns*ηm=(Fp+Ft+Gcx+Pb+Px)*Vt
Ns*ηm=(Fp+Ft+Gcx+Pb+Px)*(Vr+Vs)
Ns*ηm=(Fp+Ft+Gcx+Pb+Px)*Vr+Pn*Vs
Nm=(1-ηm)*Ns
Nf=(Fp+Ft)*rd
Nw=Gcx*Vr
Nb=Pb*Vr=mc*$\frac{\text{dV}_{r}}{\text{dt}}$*Vr
Nu=Px*Vr
Nδ=Pn*Vs=Pn*$\frac{\delta}{100}$*Vt
Ns=Nm+Nf+Nw+Nb+Nu+Nδ
NWOM=M0*ω0=$\frac{\pi}{30}$*M0*n0
Nh=Qh*ph
ηN=$\frac{N_{s}}{N_{\text{smax}}}$*100
Gpal=$\frac{N_{s}*q_{p}}{1000}$
Gpal=$\frac{N_{s}*q_{p}}{860}$
Ns=Nmc+Nfc+Nδc+Nu+NWOM
Pn=Fp+Ff+Px=Ffc+Px*
Pnw=Fpw+Ftw+K-Px=Ffw+K-Px
Ffc=Fp+Ft=Gc*f
Ffw=Gw*f
K=kj*bw*hw
Yt*L-Gc*(L-a)-Mp-Mt-Px*hz=0
Mp+Mt=Mfc=Ffc*Vr
Ytw*Lw-Gw*(Lw-aw)-Mpw-Mtw+K*hw+Px*hz=0
Mfw=Mpw+Mtw=Ftw*Vr
Pn=Yt*ϕn=Ffc+Px
Pnw=Ytw*ϕn=Ffw+K-Px
Pn+Pnw=(Yt+Ytw)*ϕn=Ffc+Ffw+K
Nδc=Yt*ϕn*$\frac{\delta}{100 - \delta}$*Vr
Nfc=Ffc*Vr
Nu=Px*Vr
NWOM=$\frac{N_{p} + Y_{\text{tw}}*\varphi_{n}*V_{r} + Y_{\text{tw}}*\varphi_{n}*\frac{\delta}{100 - \delta}*V_{r}}{\eta_{\text{wm}}}$
Ns=$\frac{N_{\text{δc}} + N_{\text{fc}} + N_{u} + N_{\text{WOM}}}{\eta_{m}}$
Nmc=(1-ηm)*Ns
Nδw=Ytw*ϕn*$\frac{\delta}{100 - \delta}*V_{r}$
Nfw=Ffw*Vr
Nmw=(1-ηmw)*NWOM
Ne=NL+NP.
ηo=Ne/Ns
Gpal=0,001*Ns*gp
Pn=Ffc+Ffw+K
Px=Ffw+K
αw>αz ctgαz-ctgαw=B/L
α=arctg(L/Rs)
Rs=L*ctgα
ω=V/Rs
Eb=0,5*B+R+e
Ep=0,5*B+2,7*R+e
x≥2R Snb=π*R+(x-2R)+2e≈R+x+2e
x<2R Snp=2*π*R+2e≈6*R+2*e
ϰ=Sr/Sc=Sr/(Sr*Sn)
Sr=Lz*(Z/b)
in=(Z/b)-1
in=inb+inp
inp=$\frac{2*R}{b}$-1 inb=(Z-2*R)/b
Sn=inp*Snp+inb*Snb Z=2*$\sqrt{4R^{2} - \left( 3R + e \right)b}$
Xmax=Z xmin=2R xŚr=(Z+2R)/2