Pasmo DÅ‚ugośćúl elektromagnetycznych

Pasmo Długość [m]

Fale radiowe >10-4

Mikrofale 3·10-1 - 3·10-3

Podczerwień 10-3 - 7,8·10-7

Światło widzialne 7,8·10-7 - 4·10-7

Ultrafiolet 4·10-7 – 10-8

Promieniowanie rentgenowskie 10-8 – 10-11

Promieniowanie gamma <10-11

Promieniowanie elektromagnetyczne (fala elektromagnetyczna) – rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna i magnetyczna są prostopadłe do siebie, a obie są prostopadłe do kierunku rozchodzenia się promieniowania. Oba pola indukują się wzajemnie – zmieniające się pole elektryczne wytwarza zmienne pole magnetyczne, a zmieniające się pole magnetyczne wytwarza zmienne pole elektryczne. Źródłem pola EM jest przyspieszający lub hamujący ładunek elektryczny. Najczęściej źródłem tego promieniowania jest ładunek wykonujący drgania.

Fale radiowe (promieniowanie radiowe) - promieniowanie elektromagnetyczne, które może być wytwarzane przez prąd przemienny płynący w antenie. Uznaje się, że falami radiowymi są fale o częstotliwości 3 kHz - 3 THz (3*10³ - 3*1012 Hz). Wg literatury zachodniej zakres częstotliwości obejmuje fale od 3 Hz. Zależnie od długości dzielą się na pasma radiowe.

Mikrofale to rodzaj promieniowania elektromagnetycznego o długości fali pomiędzy podczerwienią i falami ultrakrótkimi, zaliczane są do fal radiowych. W różnych opracowaniach spotyka się różne zakresy promieniowania uznawanego za promieniowanie mikrofalowe np: 1 mm (częstotliwość 300 GHz)

Podczerwień (promieniowanie podczerwone) (ang. infrared, IR) – promieniowanie elektromagnetyczne o długości fal pomiędzy światłem widzialnym a falami radiowymi. Oznacza to zakres od 780 nm do 1 mm.

Światło widzialne – ta część promieniowania elektromagnetycznego, na którą reaguje siatkówka oka w procesie widzenia. Dla człowieka promieniowanie to zawiera się w przybliżeniu w zakresie długości fal 380-780 nm (co najmniej), dla innych zwierząt zakres ten bywa inny, aczkolwiek o zbliżonych wartościach. Energia promieniowania słonecznego (irradiancja) zawiera się w większości pomiędzy falami o długości 280-4000 nm i odpowiada dość dokładnie promieniowaniu ciała doskonale czarnego w temperaturze około 6000 K.

Ultrafiolet (UV, promieniowanie ultrafioletowe) to promieniowanie elektromagnetyczne o długości fali krótszej niż światło widzialne i dłuższej niż promieniowanie rentgenowskie (ang. X-rays). Oznacza to zakres długości od 100 nm do 380 nm. Słowo "ultrafiolet" oznacza "powyżej fioletu" i utworzone jest z łacińskiego słowa "ultra" (ponad) i słowa "fiolet" oznaczającego barwę o najmniejszej długości fali w świetle widzialnym. Dawniej było nazywane promieniowaniem "pozafiołkowym".

Promieniowanie rentgenowskie (w wielu krajach nazywane promieniowaniem X lub promieniami X) – to rodzaj promieniowania elektromagnetycznego, którego długość fali mieści się w zakresie od 10 pm do 10 nm. Zakres promieniowania rentgenowskiego znajduje się pomiędzy ultrafioletem i promieniowaniem gamma. Znanym skrótem nazwy jest promieniowanie rtg.

twarde promieniowanie rentgenowskie - długość od 5 pm do 100 pm

miękkie promieniowanie rentgenowskie - długość od 0,1 nm do 10 n

Promieniowanie gamma to wysokoenergetyczna forma promieniowania elektromagnetycznego. Za promieniowanie gamma uznaje się promieniowanie o energii kwantu większej od 10 keV, co odpowiada częstotliwości większej od 2,42 EHz, a długości fali mniejszej od 124 pm. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego. W wielu publikacjach rozróżnienie promieniowania gamma oraz promieniowania X opiera się na ich źródłach, a nie na długości fali. Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie, w wyniku zderzeń elektronów z atomami. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym. Nazwa promieniowania gamma pochodzi od greckiej litery γ.

Po zatwierdzeniu przez Generalną Konferencję Miar i Wag w 1983 definicji metra, jako odległości, jaką pokonuje światło w próżni w czasie , prędkość światła w próżni stała się wzorcem i wynosi dokładnie . W mniej dokładnych obliczeniach, często używa się też przybliżonej wartości tej prędkości: .

Dyfrakcja to zjawisko fizyczne zmiany kierunku rozchodzenia się fali na krawędziach przeszkód oraz w ich pobliżu. Zjawisko zachodzi dla wszystkich wielkości przeszkód, ale wyraźnie jest obserwowane dla przeszkód o rozmiarach porównywalnych z długością fali.

Dyfrakcja używana jest do badania fal, oraz obiektów o niewielkich rozmiarach, w tym i kryształów, ogranicza zdolność rozdzielczą układów optycznych.

Jeżeli wiązka fal przechodzi przez szczelinę lub omija obiekt, to zachodzi zjawisko ugięcia. Zgodnie z zasadą Huygensa fala rozchodzi się w ten sposób, że każdy punkt fali staje się nowym źródłem fali, tak powstałe fale rozchodzą się jako fale kuliste a fala w każdym punkcie jest sumą wszystkich fal (interferencja). Za przeszkodą pojawią się obszary wzmocnienia i osłabienia rozchodzących się fal.

Zjawisko dyfrakcji występuje dla wszystkich rodzajów fal np. fal elektromagnetycznych, fal dźwiękowych oraz fal materii.

Jeden z najprostszych przykładów zjawiska dyfrakcji zachodzi, gdy równoległa wiązka światła (np z lasera) przechodzi przez wąską pojedynczą szczelinę zwaną szczeliną dyfrakcyjną. Zgodnie z zasadą Huygensa każdy punkt szczeliny o szerokości d, jest nowym źródłem fali. Między źródłami zachodzi interferencja, co powoduje wzmacnianie i osłabianie światła rozchodzącego się w różnych kierunkach. Dla pojedynczej szczeliny jasność w funkcji kąta odchylenia od osi przyjmuje postać:

gdzie:

I – intensywność światła,

I0 – intensywność światła w maksimum czyli dla kąta równego 0,

λ – długość fali,

d – szerokość szczeliny,

funkcja sinc(x) = sin(x)/x.

Przepuszczenie fali przez szczelinę dyfrakcyjną pozwala na określenie kierunku rozchodzenia się fali. Im mniejsza jest szerokość szczeliny, tym dokładniej można to zrobić. Jednocześnie zmniejszanie szczeliny powoduje, że trudniej jest określić energię fali, ponieważ rozprasza się ona na większy obszar. W efekcie iloczyn błędu określenia energii oraz błędu pomiaru kierunku musi być większy od pewnej stałej. Oznacza to, że istnieje granica dokładności pomiaru parametrów rozchodzącej się fali. Zjawisko to ma fundamentalne znaczenie, jeżeli weźmie się pod uwagę, że każda materialna cząstka jest falą. Zjawisko to jest potwierdzeniem zasady nieoznaczoności. Dualizm korpuskularno-falowy powoduje, że możliwa jest obserwacja dyfrakcji cząstek materialnych. Eksperymenty udowodniły, że zjawisko to zachodzi dla elektronów i neutronów

Doświadczenie Younga - eksperyment polegający na przepuszczeniu spójnego światła poprzez dwa pobliskie otwory w przesłonie i rzutowaniu na ekran. Na ekranie wskutek interferencji tworzą się charakterystyczne prążki, tzn. obszary w których światło jest wygaszone i wzmocnione.

Warunek powstania maksimum:

Warunek powstania minimum:

gdzie:

d - odległość między szczelinami, λ - długość fali αk - kąt pod jakim tworzy się k-te maksimum lub minimum i może być widoczne na ekranie


Wyszukiwarka

Podobne podstrony:
Pomiar długości?li elektromagnetycznej metodami interferencyjnymi
sprawko fizyka cwa Pomiar długości?l elektromagnetycznych metodami interferencyjnymi
Mikrofale to?le elektromagnetyczne o małej długości?li zawierającej się w granicach od 1 m do około
18 Omów zasady metody?zowej pomiaru długości w?lmierzach elektronicznych
Napęd Elektryczny wykład
Podstawy elektroniki i miernictwa2
elektryczna implementacja systemu binarnego
urzÄ…dzenia elektrotermiczn
Podstawy elektroniki i energoelektroniki prezentacja ppt
Elektryczne pojazdy trakcyjne
elektrofizjologia serca
Ćwiczenia1 Elektroforeza
elektrolity 3
Urządzenia i instalacje elektryczne w przestrzeniach zagrożonych wybuchem
Elektroforeza DNA komórkowego BioAut1, BioAut2 i Ch1

więcej podobnych podstron