CAŁKOWANIE PRZEZ CZĘŚCI | CAŁKOWANIE PRZEZ PODSTAWIENIE |
---|---|
CHARAKTERYSTYCZNA CAŁKA | PRZYKŁAD |
∫xsinxdx |
$$\left| \begin{matrix} u = x & v^{'} = \sin x \\ u^{'} = 1 & v = \operatorname{-cos}x \\ \end{matrix} \right|$$ |
∫arctg4x |
$$\left| \begin{matrix} u = arctg4x & v^{'} = 1 \\ u^{'} = \frac{4}{1 + {16x}^{2}} & v = x \\ \end{matrix} \right|$$ |
∫x2cosxdx |
$$\left| \begin{matrix} u = x^{2} & v^{'} = \cos x \\ u^{'} = 2x & v = \sin x \\ \end{matrix} \right|$$ |
∫x3sin2x |
$$\left| \begin{matrix} u = x^{3} & v^{'} = \sin{2x} \\ u^{'} = {3x}^{2} & v = - \frac{1}{2}\cos{2x} \\ \end{matrix} \right|$$ |
∫xcos2xdx |
$$\left| \begin{matrix} u = \cos^{2}x & v^{'} = x \\ u^{'} = - \sin{2x} & v = \frac{1}{2}x^{2} \\ \end{matrix} \right|$$ |
∫(arccosx)2dx |
$$\left| \begin{matrix} u = \left( \arccos x \right)^{2} & v^{'} = 1 \\ u^{'} = 2arccosx \bullet \frac{- 1}{\sqrt{1 - x^{2}}} & v = x \\ \end{matrix} \right|$$ |
∫xtg2xdx |
$$\left| \begin{matrix} u = x & v^{'} = \text{tg}^{2}x \\ u^{'} = 1 & v = tgx - x \\ \end{matrix} \right|$$ |
∫xarctgxdx |
$$\left| \begin{matrix} u = \text{arctg}x & v^{'} = x \\ u^{'} = \frac{1}{x^{2} + 1} & v = \frac{1}{2}x^{2} \\ \end{matrix} \right|$$ |
$$\int_{}^{}\frac{ln(\cos{x)}}{\cos^{2}x}$$ |
$$\left| \begin{matrix} u = ln(\cos x) & v^{'} = \frac{1}{\cos^{2}x} \\ u^{'} = \frac{1}{\cos x} \bullet \left( - \sin x \right) = - tgx & v = tgx \\ \end{matrix} \right|$$ |
∫xe2xdx |
$$\left| \begin{matrix} u = x & v^{'} = e^{2x} \\ u^{'} = 1 & v = \frac{1}{2}e^{2x} \\ \end{matrix} \right|$$ |
∫x4exdx |
$$\left| \begin{matrix} u = x^{4} & v^{'} = e^{x} \\ u^{'} = 4x^{3} & v = e^{x} \\ \end{matrix} \right|$$ |