$$\frac{1}{1 - x}$$ |
$$\sum_{n = 0}^{\infty}{x^{n} =}$$ |
---|---|
$$\frac{1}{1 + x}$$ |
$$\sum_{n = 0}^{\infty}{- 1}^{n}*x^{n} = \ $$ |
sinx |
$$\sum_{n = 0}^{\infty}\frac{{- 1}^{n}*x^{2n + 1}}{\left( 2n + 1 \right)!} =$$ |
cosx |
$$\sum_{n = 0}^{\infty}\frac{{- 1}^{n}*x^{2n}}{\left( 2n \right)!} =$$ |
ex |
$$\sum_{n = 0}^{\infty}\frac{x^{n}}{n!} =$$ |
shx |
$$\sum_{n = 0}^{\infty}\frac{x^{2n + 1}}{\left( 2n + 1 \right)!} =$$ |
chx |
$$\sum_{n = 0}^{\infty}{\frac{x^{2n}}{\left( 2n \right)!} =}$$ |
ln(1 + x) |
$$\sum_{n = 0}^{\infty}\frac{{- 1}^{n + 1}*x^{n}}{n} =$$ |
Szeregi $\frac{1}{n^{p}}$ , zb. P>1 , Roz p<=1 Kry. Cauchy’ego Kry.d’Alemberta 0<=g<1 zbiezny g>1 roz. Zb-zb bezwzgle Zb-roz-warunkowo Roz-roz |
Całki F(x)<=g(x) g- zb to f-zb f- Roz to g-roz $\frac{1}{x^{p}}$ od ∞ -1 p>1 zb od 1-0 p<1 zb |
---|
Fśr= 1/b-a * !f(x)dx P=! (g(x) – (f(x))dx L=! 1+(f ’(x))^2 dx V=! pi f^2(x) dx S=2pi ! f(x) 1+ (f ‘(x))^2 dx |
---|